In this paper, Duroc-lanndrae-Yorkshire crossbred piggy of born at 75 days of age, bouncing with health and similar body weight were randomly divided into experimental group (136 pigs) and control group (136 pigs)...In this paper, Duroc-lanndrae-Yorkshire crossbred piggy of born at 75 days of age, bouncing with health and similar body weight were randomly divided into experimental group (136 pigs) and control group (136 pigs). Pigs in control group were fed with conventional diets, and 4% microbial fermentation feeds were added to the basal diet of experimental group to research on the effect of performance and meat quality of pig breeding. The results indicated that after feeding 106 d, compared to control group, the slaughter performance, meat quality and content of fatty acid and amino acid of experimental group were all better, its slaughter rate increased 1.53%, the carcass weight increased 2.75% and the backfat thickness decreased 0.02 cm. In addition, the pork meat in test group hadn't antibiotic and heavy metal residues, while it had higher color score, lower pH45min and pH24h value, better tenderness and rate of cooked meat and higher content of fatty acids, polyunsaturated fatty acids and amino acids. Microbial fermentation feed using in test group can significantly improved the flavor and aroma of pork, and eating this pork conducive more to human health. Thus, the application of microbial fermenta- tion feed can provide a more safe, healthy and nutritious flavor pork for human beings.展开更多
The effects of different microbes on fermenting feed for sea cucumber (Apostichopus japonicus) were compared to select the optimal fermentation strain in this study. Saccharomgces cerevisae, Candida utilis, Bacillus...The effects of different microbes on fermenting feed for sea cucumber (Apostichopus japonicus) were compared to select the optimal fermentation strain in this study. Saccharomgces cerevisae, Candida utilis, Bacillus subtilis and Geotrichum candidum were independently added into the experimental compound feed, while only saline was mixed with the control feed. The fermentation treatments were inoculated with 10% seed solution under the condition of 25 ~C and 70% water content, which lasted for 5 days to elucidate the optimal microbe strain for fermenting effect. Physicochemical indexes and sensorial characteristics were measured per day during the fermentation. The indexes included dry matter recovery (DMR), crude protein (CP), the percentage of amino acid nitrogen to total nitrogen (AA-N/tN), the percentage of ammonia nitrogen to total nitrogen (NH3-N/tN), and the ratio of fermentation strains and vibrios to the total microbes, color, smell and viscosity. The results showed that DMR, CP and AA-N/tN of the S. cerevisae group reached the highest level on day 3, but the ratio of fermentation strain was second to C. utilis group. In addition, its NH3-N/tN and the ratio of vibrios were maintained at low levels, and the sensory evaluation score including smell, color and viscosity was the highest in S. cerevisae group on day 3. Therefore, S. cerevisae could be the optimal strain for the feed fermentation for sea cucumber. This research developed a new production method of fermentation feed for sea cucumber.展开更多
[Objective] The aim was to study the effects of compound microbial inoculants on fermentation bed.[Method] With fermentation simulated in lab,analysis was conducted on changes of temperature,pH,nitrate nitrogen,ammoni...[Objective] The aim was to study the effects of compound microbial inoculants on fermentation bed.[Method] With fermentation simulated in lab,analysis was conducted on changes of temperature,pH,nitrate nitrogen,ammonium nitrogen,urease activity and protease activity in fermentation by microorganism and natural fermentation respectively,to explore effects of compound microbial inoculants on fermentation bed of swine.[Result] Compared with control group,the added microbial inoculants in test group promoted temperature rising during fermentation and prolonged lasting period of high temperature,for example,high temperature at 60 ℃ maintained 10 d in the test.Furthermore,the inoculants reduced pH of packaging material environment,for example,pH finally was 7.05,lower than that of control group.Microbial inoculants accelerated transformation of ammonium nitrogen into nitrate nitrogen and reduced nitrogen loss.In addition,activities of urease and protease enhanced in packaging materials and excrements degraded rapidly.[Conclusion] The research provides technical references for strain development,selection and evaluation of fermentation bed of swine.展开更多
The production of lactic acid from kitchen garbage, the precursor for production of biodegradable plastics is described in detail. The influence of temperature on the lactic acid concentration, sugar concentration, an...The production of lactic acid from kitchen garbage, the precursor for production of biodegradable plastics is described in detail. The influence of temperature on the lactic acid concentration, sugar concentration, and decrement of garbage were evaluated through experiments. Fermentation were carried out in an incubator at 5, 25, 37 and 50 ℃. The latic acid produced was maximum at initial pH 6.0 and 37 ℃, i.e. 38 g/L with a yield of 0.23 g/gVS. It is concluded from the experimental results that temperature has quite a considerable effect on the production of lactic acid; lactic acid concentration increases with temperature until 37 ℃, and production rate of lactic acid drops at 50 ℃; the optimal fermentation is 37 ℃. This study shows that production of lactic acid from kitchen garbage is feasible and reduction of garbage can be realized.展开更多
Due to the scarcity of fossil fuels in the world, there is increasing interest in the commercial production of biodiesel, which leads to obtaining large amounts of glycerol as a byproduct. If not disposed of properly,...Due to the scarcity of fossil fuels in the world, there is increasing interest in the commercial production of biodiesel, which leads to obtaining large amounts of glycerol as a byproduct. If not disposed of properly, glycerol can generate environmental impact. One of the promises, the application of the crude glycerol is the production of citric acid by microbial fermentation. Citric acid is industrially produced by a submerged fermentation process with Aspergillus niger, using sucrose as carbon source, but due to increased demand for citric acid, alternative processes using renewable sources or waste materials as substrates and the cultivation of yeast strains are being studied. The aim of the study was to determine the best culture condition for maximum citric acid synthesis and lower isocitric acid production from crude glycerol through experimental design tool. For this purpose, the yeast strain Yarrowia lipolytica IMUFRJ-50682 was cultivated in nitrogen-limited glycerol-based media. Therefore, glycerol and yeast extract concentrations and agitation speed were evaluated as independent variables. With pure glycerol, the highest citric acid production achieved was 16.5 g/L with an isocitric acid production of 7.7% (in relation to citric acid). With crude glycerol, citric acid production reduced to 6.7 g/L because of higher biomass yield. Therefore, an increase in the initial carbon to nitrogen molar ratio from 714 to 1,561 was necessary to increase citric acid production to 9.2 g/L, reducing isocitric acid production and to achieve a yield of 0.41 g of citric acid per glycerol consumed. In this condition, less nitrogen source was used, reducing production costs.展开更多
Nipah (Nypafruticans) is a species of palm trees that grows in mangroves environment near the sea shore. Nipah is potential to produce biofuel energy. The purposes of this research were 1) to determine the optimum ...Nipah (Nypafruticans) is a species of palm trees that grows in mangroves environment near the sea shore. Nipah is potential to produce biofuel energy. The purposes of this research were 1) to determine the optimum bacterial concentration for fermentation to produce high concentration of bio-ethanol, and 2) to determine the optimum incubation time for fermentation to produce high concentration of bio-ethanol. The research had been conducted from June until November 2009 using nipah sap as the substrate and Saceharomyces cerevisiae as a fermentation starter. The experimental design used was a randomized block design (RBD). Factors tested were starter concentration (5%, 7.5%, 10%) and incubation time (2, 4, 6 days). The variables observed were concentration of reducing sugar, total microorganism (CFU/mL), and bio-ethanol production. The results showed that the highest yield of bio-ethanol (8.98%) was produced with 7.5% of starter concentration and 6 days of incubation time.展开更多
基金Supported by Key Program of Provincial Science&Technology Department(2014N3011)Special Program of Provincial Science&Technology Department Key Program(2014NZ0002)Longyan S&T Program(2015LY32)~~
文摘In this paper, Duroc-lanndrae-Yorkshire crossbred piggy of born at 75 days of age, bouncing with health and similar body weight were randomly divided into experimental group (136 pigs) and control group (136 pigs). Pigs in control group were fed with conventional diets, and 4% microbial fermentation feeds were added to the basal diet of experimental group to research on the effect of performance and meat quality of pig breeding. The results indicated that after feeding 106 d, compared to control group, the slaughter performance, meat quality and content of fatty acid and amino acid of experimental group were all better, its slaughter rate increased 1.53%, the carcass weight increased 2.75% and the backfat thickness decreased 0.02 cm. In addition, the pork meat in test group hadn't antibiotic and heavy metal residues, while it had higher color score, lower pH45min and pH24h value, better tenderness and rate of cooked meat and higher content of fatty acids, polyunsaturated fatty acids and amino acids. Microbial fermentation feed using in test group can significantly improved the flavor and aroma of pork, and eating this pork conducive more to human health. Thus, the application of microbial fermenta- tion feed can provide a more safe, healthy and nutritious flavor pork for human beings.
基金financially supported by the National High Technology Research and Development Program,China(2012AA10A412)the National Natural Science Foundation of China(No.31202016)+2 种基金the National Key Technology R&D Program(2012BAD17B03)Agriculture Seed Improvement Project of Shandong Province,Special Funds for Technology R&D Program in Research Institutes(2011EG134219)Strategic Emerg-ing Industry Cultivation Project of Qingdao(13-4-1-65-hy)
文摘The effects of different microbes on fermenting feed for sea cucumber (Apostichopus japonicus) were compared to select the optimal fermentation strain in this study. Saccharomgces cerevisae, Candida utilis, Bacillus subtilis and Geotrichum candidum were independently added into the experimental compound feed, while only saline was mixed with the control feed. The fermentation treatments were inoculated with 10% seed solution under the condition of 25 ~C and 70% water content, which lasted for 5 days to elucidate the optimal microbe strain for fermenting effect. Physicochemical indexes and sensorial characteristics were measured per day during the fermentation. The indexes included dry matter recovery (DMR), crude protein (CP), the percentage of amino acid nitrogen to total nitrogen (AA-N/tN), the percentage of ammonia nitrogen to total nitrogen (NH3-N/tN), and the ratio of fermentation strains and vibrios to the total microbes, color, smell and viscosity. The results showed that DMR, CP and AA-N/tN of the S. cerevisae group reached the highest level on day 3, but the ratio of fermentation strain was second to C. utilis group. In addition, its NH3-N/tN and the ratio of vibrios were maintained at low levels, and the sensory evaluation score including smell, color and viscosity was the highest in S. cerevisae group on day 3. Therefore, S. cerevisae could be the optimal strain for the feed fermentation for sea cucumber. This research developed a new production method of fermentation feed for sea cucumber.
基金Supported by Construction of Innovative Enterprises of Changsha Science and Technology Program(K1112050)~~
文摘[Objective] The aim was to study the effects of compound microbial inoculants on fermentation bed.[Method] With fermentation simulated in lab,analysis was conducted on changes of temperature,pH,nitrate nitrogen,ammonium nitrogen,urease activity and protease activity in fermentation by microorganism and natural fermentation respectively,to explore effects of compound microbial inoculants on fermentation bed of swine.[Result] Compared with control group,the added microbial inoculants in test group promoted temperature rising during fermentation and prolonged lasting period of high temperature,for example,high temperature at 60 ℃ maintained 10 d in the test.Furthermore,the inoculants reduced pH of packaging material environment,for example,pH finally was 7.05,lower than that of control group.Microbial inoculants accelerated transformation of ammonium nitrogen into nitrate nitrogen and reduced nitrogen loss.In addition,activities of urease and protease enhanced in packaging materials and excrements degraded rapidly.[Conclusion] The research provides technical references for strain development,selection and evaluation of fermentation bed of swine.
文摘The production of lactic acid from kitchen garbage, the precursor for production of biodegradable plastics is described in detail. The influence of temperature on the lactic acid concentration, sugar concentration, and decrement of garbage were evaluated through experiments. Fermentation were carried out in an incubator at 5, 25, 37 and 50 ℃. The latic acid produced was maximum at initial pH 6.0 and 37 ℃, i.e. 38 g/L with a yield of 0.23 g/gVS. It is concluded from the experimental results that temperature has quite a considerable effect on the production of lactic acid; lactic acid concentration increases with temperature until 37 ℃, and production rate of lactic acid drops at 50 ℃; the optimal fermentation is 37 ℃. This study shows that production of lactic acid from kitchen garbage is feasible and reduction of garbage can be realized.
文摘Due to the scarcity of fossil fuels in the world, there is increasing interest in the commercial production of biodiesel, which leads to obtaining large amounts of glycerol as a byproduct. If not disposed of properly, glycerol can generate environmental impact. One of the promises, the application of the crude glycerol is the production of citric acid by microbial fermentation. Citric acid is industrially produced by a submerged fermentation process with Aspergillus niger, using sucrose as carbon source, but due to increased demand for citric acid, alternative processes using renewable sources or waste materials as substrates and the cultivation of yeast strains are being studied. The aim of the study was to determine the best culture condition for maximum citric acid synthesis and lower isocitric acid production from crude glycerol through experimental design tool. For this purpose, the yeast strain Yarrowia lipolytica IMUFRJ-50682 was cultivated in nitrogen-limited glycerol-based media. Therefore, glycerol and yeast extract concentrations and agitation speed were evaluated as independent variables. With pure glycerol, the highest citric acid production achieved was 16.5 g/L with an isocitric acid production of 7.7% (in relation to citric acid). With crude glycerol, citric acid production reduced to 6.7 g/L because of higher biomass yield. Therefore, an increase in the initial carbon to nitrogen molar ratio from 714 to 1,561 was necessary to increase citric acid production to 9.2 g/L, reducing isocitric acid production and to achieve a yield of 0.41 g of citric acid per glycerol consumed. In this condition, less nitrogen source was used, reducing production costs.
文摘Nipah (Nypafruticans) is a species of palm trees that grows in mangroves environment near the sea shore. Nipah is potential to produce biofuel energy. The purposes of this research were 1) to determine the optimum bacterial concentration for fermentation to produce high concentration of bio-ethanol, and 2) to determine the optimum incubation time for fermentation to produce high concentration of bio-ethanol. The research had been conducted from June until November 2009 using nipah sap as the substrate and Saceharomyces cerevisiae as a fermentation starter. The experimental design used was a randomized block design (RBD). Factors tested were starter concentration (5%, 7.5%, 10%) and incubation time (2, 4, 6 days). The variables observed were concentration of reducing sugar, total microorganism (CFU/mL), and bio-ethanol production. The results showed that the highest yield of bio-ethanol (8.98%) was produced with 7.5% of starter concentration and 6 days of incubation time.