花生是重要的油料和经济作物,花生种皮色泽存在较大差异,具有白色、红色、紫色、粉色及花斑类型,花斑种皮花生是其中的独特成员。有关花斑花生种皮花青素合成的分子机制存在深入研究的必要性。本研究以花斑种皮花生VG-02为研究材料,采...花生是重要的油料和经济作物,花生种皮色泽存在较大差异,具有白色、红色、紫色、粉色及花斑类型,花斑种皮花生是其中的独特成员。有关花斑花生种皮花青素合成的分子机制存在深入研究的必要性。本研究以花斑种皮花生VG-02为研究材料,采用液相色谱串联质谱(LC-MS/MS)法检测不同发育阶段种皮中花青素的相对含量变化,共检测到12种与种皮颜色相关的代谢物质。在花生种皮着色区(F)与非着色区(B)开花下针(DAF)45 d的F2-B2比较组中差异代谢产物最多,结果表明矢车菊素3-O-半乳糖苷和矢车菊素O-丁香酸含量着色区低于非着色区,差异倍数分别为0.63和2.35;松香花青素O-己糖苷,原花青素A1、A2、B2、B3,矢车菊素,花翠素,花翠素3-O-葡萄糖苷,矢车菊素3-O-半乳糖苷含量着色区高于非着色区,差异倍数1.05~11.55。花翠素和矢车菊素是导致着色区与非着色区颜色差异的主要代谢物。RNA-seq分析表明,1050个差异基因中筛选出与花斑种皮颜色形成高度相关的差异表达基因共27个,包括3个PAL、1个C4H、2个CHS、1个F3H、1个F3′H、2个DFR、2个LAR、2个IAA、4个bHLH和9个MYB,其中上调13个、下调14个。KEGG(Kyoto Encyclopedia of Genes and Genomes)分析表明,与种皮颜色合成相关所富集的代谢通路有苯丙氨酸代谢、苯丙醇生物合成、黄酮和黄酮醇生物合成、类黄酮生物合成、植物激素信号转导以及昼夜节律植物,其中类黄酮生物合成代谢途径是花生种皮花斑形成最直接的代谢途径。对20个差异基因进行qPCR验证,结果表明差异基因qPCR表达趋势与转录组测序结果显著一致。本研究结果对进一步揭示花生花斑种皮花青素合成调控机制具有一定的参考意义。展开更多
[Objective] This study aimed to investigate the primary and secondary metabolisms during the germination of Scutellaria baicalensis Georgi seeds under different light intensities. [Method] The activities of CHL, solub...[Objective] This study aimed to investigate the primary and secondary metabolisms during the germination of Scutellaria baicalensis Georgi seeds under different light intensities. [Method] The activities of CHL, soluble sugar, PAL, C4H and CHS were determined with ultraviolet spectrophotometry. The secondary metabolites were detected by High Performance Liquid Chromatography (HPLC). [Result] The results indicate that the germination of Scutellaria baicalensis Georgi seeds is not sensitive to light and the seedlings were very sensitive to light. The CHL, soluble sugar, PAL, C4H and CHS continuously increased with light intensity. The content of secondary metabolites also increased. [Conclusion] Light increased the formation of leaf photosynthetic pigment, thereby affecting the primary metabolites. The activities of PAL, C4H and CHS significantly increased with the development of light intensity. Finally the secondary metabolites of medicinal plants increased sharply. Therefore, the quality of Scutellaria baicalensis Georgi materials can be improved by increasing the light intensity moderately.展开更多
Through several waves of technological research and un‐matched innovation strategies,bio‐catalysis has been widely used at the industrial level.Because of the value of enzymes,methods for producing value‐added comp...Through several waves of technological research and un‐matched innovation strategies,bio‐catalysis has been widely used at the industrial level.Because of the value of enzymes,methods for producing value‐added compounds and industrially‐relevant fine chemicals through biological methods have been developed.A broad spectrum of numerous biochemical pathways is catalyzed by enzymes,including enzymes that have not been identified.However,low catalytic efficacy,low stability,inhibition by non‐cognate substrates,and intolerance to the harsh reaction conditions required for some chemical processes are considered as major limitations in applied bio‐catalysis.Thus,the development of green catalysts with multi‐catalytic features along with higher efficacy and induced stability are important for bio‐catalysis.Implementation of computational science with metabolic engineering,synthetic biology,and machine learning routes offers novel alternatives for engineering novel catalysts.Here,we describe the role of synthetic biology and metabolic engineering in catalysis.Machine learning algorithms for catalysis and the choice of an algorithm for predicting protein‐ligand interactions are discussed.The importance of molecular docking in predicting binding and catalytic functions is reviewed.Finally,we describe future challenges and perspectives.展开更多
Bacillus subtilis produces many chemlcally-dwerse seconaary metaDolltes or interest to chemists ano biologlsts. Based on this, this review gives a detailed overview of the natural components produced by B. subtilis in...Bacillus subtilis produces many chemlcally-dwerse seconaary metaDolltes or interest to chemists ano biologlsts. Based on this, this review gives a detailed overview of the natural components produced by B. subtilis including cyclic lipopeptides, polypeptides, proteins (enzymes), and non-peptide products. Their structures, bioactive ac- tivities and the relevant variants as novel lead structures for drug discovery are also described. The challenging effects of fermentation metabolites, isolation and purification, as well as the overproduction of bioactive com- pounds from B. subtilis by metabolic engineering, '~ere also highlighted. Systematically exploring biosynthetic routes and the functions of secondary metabolites from 13. subtilis may not only be beneficial in improving yields of the products, but also in helping them to be used in food industry and public medical service on a large-scale.展开更多
文摘花生是重要的油料和经济作物,花生种皮色泽存在较大差异,具有白色、红色、紫色、粉色及花斑类型,花斑种皮花生是其中的独特成员。有关花斑花生种皮花青素合成的分子机制存在深入研究的必要性。本研究以花斑种皮花生VG-02为研究材料,采用液相色谱串联质谱(LC-MS/MS)法检测不同发育阶段种皮中花青素的相对含量变化,共检测到12种与种皮颜色相关的代谢物质。在花生种皮着色区(F)与非着色区(B)开花下针(DAF)45 d的F2-B2比较组中差异代谢产物最多,结果表明矢车菊素3-O-半乳糖苷和矢车菊素O-丁香酸含量着色区低于非着色区,差异倍数分别为0.63和2.35;松香花青素O-己糖苷,原花青素A1、A2、B2、B3,矢车菊素,花翠素,花翠素3-O-葡萄糖苷,矢车菊素3-O-半乳糖苷含量着色区高于非着色区,差异倍数1.05~11.55。花翠素和矢车菊素是导致着色区与非着色区颜色差异的主要代谢物。RNA-seq分析表明,1050个差异基因中筛选出与花斑种皮颜色形成高度相关的差异表达基因共27个,包括3个PAL、1个C4H、2个CHS、1个F3H、1个F3′H、2个DFR、2个LAR、2个IAA、4个bHLH和9个MYB,其中上调13个、下调14个。KEGG(Kyoto Encyclopedia of Genes and Genomes)分析表明,与种皮颜色合成相关所富集的代谢通路有苯丙氨酸代谢、苯丙醇生物合成、黄酮和黄酮醇生物合成、类黄酮生物合成、植物激素信号转导以及昼夜节律植物,其中类黄酮生物合成代谢途径是花生种皮花斑形成最直接的代谢途径。对20个差异基因进行qPCR验证,结果表明差异基因qPCR表达趋势与转录组测序结果显著一致。本研究结果对进一步揭示花生花斑种皮花青素合成调控机制具有一定的参考意义。
基金Supported by Agricultural Improved Variety Project of Shandong Province(No.2005LZ08,2008LZ013)~~
文摘[Objective] This study aimed to investigate the primary and secondary metabolisms during the germination of Scutellaria baicalensis Georgi seeds under different light intensities. [Method] The activities of CHL, soluble sugar, PAL, C4H and CHS were determined with ultraviolet spectrophotometry. The secondary metabolites were detected by High Performance Liquid Chromatography (HPLC). [Result] The results indicate that the germination of Scutellaria baicalensis Georgi seeds is not sensitive to light and the seedlings were very sensitive to light. The CHL, soluble sugar, PAL, C4H and CHS continuously increased with light intensity. The content of secondary metabolites also increased. [Conclusion] Light increased the formation of leaf photosynthetic pigment, thereby affecting the primary metabolites. The activities of PAL, C4H and CHS significantly increased with the development of light intensity. Finally the secondary metabolites of medicinal plants increased sharply. Therefore, the quality of Scutellaria baicalensis Georgi materials can be improved by increasing the light intensity moderately.
文摘Through several waves of technological research and un‐matched innovation strategies,bio‐catalysis has been widely used at the industrial level.Because of the value of enzymes,methods for producing value‐added compounds and industrially‐relevant fine chemicals through biological methods have been developed.A broad spectrum of numerous biochemical pathways is catalyzed by enzymes,including enzymes that have not been identified.However,low catalytic efficacy,low stability,inhibition by non‐cognate substrates,and intolerance to the harsh reaction conditions required for some chemical processes are considered as major limitations in applied bio‐catalysis.Thus,the development of green catalysts with multi‐catalytic features along with higher efficacy and induced stability are important for bio‐catalysis.Implementation of computational science with metabolic engineering,synthetic biology,and machine learning routes offers novel alternatives for engineering novel catalysts.Here,we describe the role of synthetic biology and metabolic engineering in catalysis.Machine learning algorithms for catalysis and the choice of an algorithm for predicting protein‐ligand interactions are discussed.The importance of molecular docking in predicting binding and catalytic functions is reviewed.Finally,we describe future challenges and perspectives.
基金Supported by the National Natural Science Foundation of China(21376215)the National Science and Technology Major Project of New Drug,China(2012ZX09103101-075)+2 种基金the Innovative Research Platform co-constructed by Zhejiang University and Taizhou City,and the Science and Technology Project of Zhejiang Province(2014C33174)the Major State Basic Research Development Program of China(2011CB710803)the National High-Tech Research and Development Program of China(2012AA022302)
文摘Bacillus subtilis produces many chemlcally-dwerse seconaary metaDolltes or interest to chemists ano biologlsts. Based on this, this review gives a detailed overview of the natural components produced by B. subtilis including cyclic lipopeptides, polypeptides, proteins (enzymes), and non-peptide products. Their structures, bioactive ac- tivities and the relevant variants as novel lead structures for drug discovery are also described. The challenging effects of fermentation metabolites, isolation and purification, as well as the overproduction of bioactive com- pounds from B. subtilis by metabolic engineering, '~ere also highlighted. Systematically exploring biosynthetic routes and the functions of secondary metabolites from 13. subtilis may not only be beneficial in improving yields of the products, but also in helping them to be used in food industry and public medical service on a large-scale.