This work reports detergents production using biological surfactants, microbiologically synthesized, and compares its foaming power and emulsification capacity to those presented by a petroleum based surfactant. Both ...This work reports detergents production using biological surfactants, microbiologically synthesized, and compares its foaming power and emulsification capacity to those presented by a petroleum based surfactant. Both used microorganisms were capable to produce surfactants, been able to emulsify oil/water mixtures and cause decrease of surface tension of water. The biosurfactant produced from Yarrowia lipolytica has a critical micelle concentration lower than that obtained from Pseudomonas aeruginosa (10 and 30 mg·Lt, respectively), but the later showed better results in foaming power and emulsification experiments, similar to the synthetic detergent.展开更多
Marine fish are incapable or have a deft- cient capacity to synthesize highly unsaturated fatty acids (HUFA) from C18 precursors, and thus fish meal and fish oil (FO) are needed in their formulated diets.
文摘This work reports detergents production using biological surfactants, microbiologically synthesized, and compares its foaming power and emulsification capacity to those presented by a petroleum based surfactant. Both used microorganisms were capable to produce surfactants, been able to emulsify oil/water mixtures and cause decrease of surface tension of water. The biosurfactant produced from Yarrowia lipolytica has a critical micelle concentration lower than that obtained from Pseudomonas aeruginosa (10 and 30 mg·Lt, respectively), but the later showed better results in foaming power and emulsification experiments, similar to the synthetic detergent.
文摘Marine fish are incapable or have a deft- cient capacity to synthesize highly unsaturated fatty acids (HUFA) from C18 precursors, and thus fish meal and fish oil (FO) are needed in their formulated diets.