[ Objective] The study aimed to reveal the biological nitrogen fixation capacity by sugarcane from Brazil under the ecological conditions of Guangxi, and to provide reference for study on the biological nitrogen fixat...[ Objective] The study aimed to reveal the biological nitrogen fixation capacity by sugarcane from Brazil under the ecological conditions of Guangxi, and to provide reference for study on the biological nitrogen fixation capacity by sugarcane and related generalization and application. [ Method] The ^15N isotopic fertilizer was solely applied on plants of three sugarcane cultivars planted in greenhouse with no other fertilizer forms applied, meanwhile virus-free stem seedling was regarded as control, to measure their biological nitrogen fixation capacity using ^15N isotope. [ Result ] The nitrogen fixation rate of B8 from Brazil reached 26.91%, while Guitang 11 and RIC16 presented no or poor nitrogen fixation capacity. [ Conclusion] The sugarcane eultivar B8 from Brazil showed some nitrogen fixation capacity under the ecological conditions of Guangxi.展开更多
Allocation of biomass and nutrient elements including Nitrogen to above and belowground compartments of beech seedlings (Fagus sylvatica L.) treated by labeled nitrogen fertilizer in the form of 15NH4 and 15NO3 were...Allocation of biomass and nutrient elements including Nitrogen to above and belowground compartments of beech seedlings (Fagus sylvatica L.) treated by labeled nitrogen fertilizer in the form of 15NH4 and 15NO3 were investigated at the end of two successive growing seasons. Pot cultured beech seedlings were grown at a green house on intact soil cores sampled from three adjacent stands including beech, Norway spruce and mixed beech-spruce cultures of Soiling forest, Germany. Comparing biomass allocation and nutrients concentrations of the seedlings between the control and 15N-fertilized treatments revealed no significant effect of N fertilization on nutrients uptake by seedlings over the experiment. The form of N input influenced its movement into plant pools. It was demonstrated that beech seedlings take up nitrogen mainly in the form of nitrate, which is then reduced in the leaves, although the differences between the retention of NO3^--N and NH4^+-N in plants were not statistically significant. Percent recoveries of 15N in trees were typically greater after 15NO3 than after 15NH4 additions. It was indicated that immobilization of ~SN tracer in fine roots was a slower process comparing other plant compartments such as stem and coarse roots, but a powerful sink for N during the course of study.展开更多
[Objective] This study to aimed to investigate the effects of Cu stress on root exudates and microbial activities in rhizosphere of grafted and ungrafted cucum-ber seedlings, and therefore to elucidate the microbial m...[Objective] This study to aimed to investigate the effects of Cu stress on root exudates and microbial activities in rhizosphere of grafted and ungrafted cucum-ber seedlings, and therefore to elucidate the microbial mechanism of grafting for in-creasing cucumber plants tolerance to Cu stress [Method] Four treatments: (1) un-grafted seedlings + test soil (U0); (2) ungrafted seedlings + test soil + CuSO4·5H2O (U1); (3) grafted seedlings + test soil (G0); (4) grafted seedlings + test soil + Cu-SO4·5H2O (G1) were set in the pot culture experiment. The contents of free amino acids, organic acids, phenolic acid and sugars, microbial population and enzyme ac-tivity in the four treatment were measured, respectively. [Result] The secretion of amino acids and organic acids were increased under Cu stress. The amino acids secretions of grafted seedlings roots were obviously higher than ungrafted seedlings except for Phe and Val. At the same time, the secretion of oxalic acid, malic acid, acetic acid, citric acid, cinnamic acid, ρ-hydroxybenzoic acid and benzoic acid of grafted seedlings were significantly higher than ungrafted seedlings as wel . There-fore, more Cu2+ were restricted in soil by chelating, complexing and precipitation with root exudates, and its toxicity was decreased. The soil microbial biomass C and N in grafted cucumber rhizosphere were significantly higher than those in ungrafted cu-cumber rhizosphere, whereas basal respiration and metabolic quotient were signifi-cantly lower. Under Cu stress, the numbers of actinomyces and nitrogen fixing bac-teria decreased and the number of fungi increased significantly, whereas there was no significant difference in amounts of bacteria. The numbers of bacteria, actino-myces, and nitrogen fixing bacteria in grafted cucumber rhizosphere were significant-ly higher than those in ungrafted cucumber rhizosphere, but the number of fungi was opposite. The activities of soil urease, phosphatase, sucrase and catalase in grafted cucumber rhizosphere were significantly higher than those in ungrafted cu-cumber rhizosphere. [Conclusion] These indicated that the soil microbial environment and soil enzymes activities were improved by grafting under Cu stress, and as a re-sult, the adaptability of cucumber to Cu stress was improved.展开更多
This study was carried out at the farm of Horticulture Department Faculty of Agriculture and forestry, Duhok University, during the winter season of 2008 to investigate the effects of biofertilizer (Azotobacter) wit...This study was carried out at the farm of Horticulture Department Faculty of Agriculture and forestry, Duhok University, during the winter season of 2008 to investigate the effects of biofertilizer (Azotobacter) with different levels of Nitrogen fertilizer (urea 46%) (100, 200, 300 kg/hectare) and without Azotobacter (Nitrogen alone) on growth, yield quantity and quality of lettuce Ramadi cv. The experiment was designed according to RCBD with three replicates. The results showed that there was significant increase in studied characteristics (plant height (cm), leaves number, length and of the stem (cm), head fresh and dry weight (g), head diameter and head yield (kg/m2)) except dry weight percentage of leaves and a significant decrease in NO3 in leaves by using Azotobacter with Urea especially at low levels.展开更多
基金National Natural Science Foundation of China (3026005430660085)+1 种基金Key Project of Guangxi Academy of Agricultural Sciences (2004002)Natural Science Foundation in Guangxi Zhuang Autonomous Region (0639011)~~
文摘[ Objective] The study aimed to reveal the biological nitrogen fixation capacity by sugarcane from Brazil under the ecological conditions of Guangxi, and to provide reference for study on the biological nitrogen fixation capacity by sugarcane and related generalization and application. [ Method] The ^15N isotopic fertilizer was solely applied on plants of three sugarcane cultivars planted in greenhouse with no other fertilizer forms applied, meanwhile virus-free stem seedling was regarded as control, to measure their biological nitrogen fixation capacity using ^15N isotope. [ Result ] The nitrogen fixation rate of B8 from Brazil reached 26.91%, while Guitang 11 and RIC16 presented no or poor nitrogen fixation capacity. [ Conclusion] The sugarcane eultivar B8 from Brazil showed some nitrogen fixation capacity under the ecological conditions of Guangxi.
基金supported by Institut für Bodenkunde und Waldernhrung,Georg-August-Universitt,Gttingen,Germany.
文摘Allocation of biomass and nutrient elements including Nitrogen to above and belowground compartments of beech seedlings (Fagus sylvatica L.) treated by labeled nitrogen fertilizer in the form of 15NH4 and 15NO3 were investigated at the end of two successive growing seasons. Pot cultured beech seedlings were grown at a green house on intact soil cores sampled from three adjacent stands including beech, Norway spruce and mixed beech-spruce cultures of Soiling forest, Germany. Comparing biomass allocation and nutrients concentrations of the seedlings between the control and 15N-fertilized treatments revealed no significant effect of N fertilization on nutrients uptake by seedlings over the experiment. The form of N input influenced its movement into plant pools. It was demonstrated that beech seedlings take up nitrogen mainly in the form of nitrate, which is then reduced in the leaves, although the differences between the retention of NO3^--N and NH4^+-N in plants were not statistically significant. Percent recoveries of 15N in trees were typically greater after 15NO3 than after 15NH4 additions. It was indicated that immobilization of ~SN tracer in fine roots was a slower process comparing other plant compartments such as stem and coarse roots, but a powerful sink for N during the course of study.
基金Supported by Shandong Modern Agricultural Technology & Industry System
文摘[Objective] This study to aimed to investigate the effects of Cu stress on root exudates and microbial activities in rhizosphere of grafted and ungrafted cucum-ber seedlings, and therefore to elucidate the microbial mechanism of grafting for in-creasing cucumber plants tolerance to Cu stress [Method] Four treatments: (1) un-grafted seedlings + test soil (U0); (2) ungrafted seedlings + test soil + CuSO4·5H2O (U1); (3) grafted seedlings + test soil (G0); (4) grafted seedlings + test soil + Cu-SO4·5H2O (G1) were set in the pot culture experiment. The contents of free amino acids, organic acids, phenolic acid and sugars, microbial population and enzyme ac-tivity in the four treatment were measured, respectively. [Result] The secretion of amino acids and organic acids were increased under Cu stress. The amino acids secretions of grafted seedlings roots were obviously higher than ungrafted seedlings except for Phe and Val. At the same time, the secretion of oxalic acid, malic acid, acetic acid, citric acid, cinnamic acid, ρ-hydroxybenzoic acid and benzoic acid of grafted seedlings were significantly higher than ungrafted seedlings as wel . There-fore, more Cu2+ were restricted in soil by chelating, complexing and precipitation with root exudates, and its toxicity was decreased. The soil microbial biomass C and N in grafted cucumber rhizosphere were significantly higher than those in ungrafted cu-cumber rhizosphere, whereas basal respiration and metabolic quotient were signifi-cantly lower. Under Cu stress, the numbers of actinomyces and nitrogen fixing bac-teria decreased and the number of fungi increased significantly, whereas there was no significant difference in amounts of bacteria. The numbers of bacteria, actino-myces, and nitrogen fixing bacteria in grafted cucumber rhizosphere were significant-ly higher than those in ungrafted cucumber rhizosphere, but the number of fungi was opposite. The activities of soil urease, phosphatase, sucrase and catalase in grafted cucumber rhizosphere were significantly higher than those in ungrafted cu-cumber rhizosphere. [Conclusion] These indicated that the soil microbial environment and soil enzymes activities were improved by grafting under Cu stress, and as a re-sult, the adaptability of cucumber to Cu stress was improved.
文摘This study was carried out at the farm of Horticulture Department Faculty of Agriculture and forestry, Duhok University, during the winter season of 2008 to investigate the effects of biofertilizer (Azotobacter) with different levels of Nitrogen fertilizer (urea 46%) (100, 200, 300 kg/hectare) and without Azotobacter (Nitrogen alone) on growth, yield quantity and quality of lettuce Ramadi cv. The experiment was designed according to RCBD with three replicates. The results showed that there was significant increase in studied characteristics (plant height (cm), leaves number, length and of the stem (cm), head fresh and dry weight (g), head diameter and head yield (kg/m2)) except dry weight percentage of leaves and a significant decrease in NO3 in leaves by using Azotobacter with Urea especially at low levels.