Spartina alterniflora Loisel, a species vegetating in intertidal flats along the eastern coast of the United States, was introduced in China almost 30 years ago and has become an urgent topic due to its invasiveness i...Spartina alterniflora Loisel, a species vegetating in intertidal flats along the eastern coast of the United States, was introduced in China almost 30 years ago and has become an urgent topic due to its invasiveness in the coastal zone of China. The impacts of this alien species S. alterniflora on intertidal ecosystem processes in the Jiangsu coastland were investigated by comparing the sediment nutrient availability and trace element concentration characteristics in a mud flat and those of a four-year old Spartina salt marsh that had earlier been a mudflat. At each study site, fifteen plots were sampled in different seasons to determine the sediment characteristics along the tidal flats. The results suggested that Spartina salt marsh sediments had significantly higher total N, available P, and water content, but lower pH and bulk density than mudflat sediments. Sediment salinity, water content, total N, organic C, and available P decreased along a seaward gradient in the Spartina salt marsh and increased with vegetation biomass. Furthermore, the concentrations of trace elements and some metal elements in the sediment were higher under Spartina although these increases were not significant. Also, in the Spartina marsh, some heavy metals were concentrated in the surface layer of the sediment. The Spartina salt marsh in this study was only four years old; therefore, it is suggested that further study of this allen species on a longer time frame in the Jiangsu coastland should be carried out.展开更多
Comprehensive study on land-use change of spatial pattern and temporal process is the key component in LUCC study nowadays. Based on the theories and methods of Geo-information Tupu (Carto-methodology in Geo-informati...Comprehensive study on land-use change of spatial pattern and temporal process is the key component in LUCC study nowadays. Based on the theories and methods of Geo-information Tupu (Carto-methodology in Geo-information, CMGI), integration of spatial pattern and temporal processes of land-use change in the Yellow River Delta (YRD) are studied in the paper, which is supported by ERDAS and ARC/INFO software. The main contents include: (1) concept models of Tupu by spatial-temporal integration on land-use change, whose Tupu unit is synthesized by "Spatial·Attribute·Process" features and composed of relatively homogeneous geographical unit and temporal unit; (2) data sources and handling process, where four stages of spatial features in 1956, 1984, 1991, and 1996 are acquired; (3) integration of series of temporal-spatial Tupu, reconstruction series of "Arising" Tupu, spatial-temporal Process Tupu and the spatial temporal Pattern Tupu on land-use change by remap tables; (4) Pattern Tupu analysis on land-use change in YRD during 1956-1996; and (5) spatial difference of the Pattern Tupu analysis by dynamic Tupu units. The various landform units and seven sub-deltas generated by the Yellow River since 1855 are different. The Tupu analysis on land-use in the paper is a promising try on the comprehensive research of "spatial pattern of dynamic process" and "temporal process of spatial pattern" in LUCC research. The Tupu methodology would be a powerful and efficient tool on integrated studies of spatial pattern and temporal process in Geo-science.展开更多
Sediment samples were cored from 3 locations representing the inner bay, the outer bay and the bay mouth of Jiaozhou Bay in September 2003 to study the source and biogeochemical characteristics of nitrogen and phospho...Sediment samples were cored from 3 locations representing the inner bay, the outer bay and the bay mouth of Jiaozhou Bay in September 2003 to study the source and biogeochemical characteristics of nitrogen and phosphorus in the bay. The content and vertical distributions of total nitrogen (TN), total phosphorus (TP), organic nitrogen (ON), organic phosphorus (OP), inorganic nitrogen (IN), inorganic phosphorus (IP), the ratio of organic carbon and total nitrogen (OC/TN), and the ratio of total nitrogen and total phosphorus (TN/TP) in the sediments were analyzed. The results show that both TN and TP in surface sediments decrease from the inner bay to the outer bay. In general, ON occupies 50%?70% of TN and IP accounts for more than 60% of TP. In ratio of OC:TN, the nitrogen accumulated in the sediments from the inner bay and the bay mouth came mainly from terrestrial sources, and the portion of autogenetic nitrogen was 28.9% and 13.1%, respectively. However, in the outer bay, nitrogen was mainly autogenetic, accounting for 62.1% of TN, whereas phosphorus was mainly land-derived. The sedimentation fluxes of nitrogen and phosphorus varied spatially. The overall diagenesis rate of nitrogen was higher than that of phosphorus. Specifically, the diagenesis rate of OP was higher than that of IP. However, the diagenesis rate of ON was not always higher than that of IN. In species, the diagenesis rate of IN is sometimes much higher than that of the OC. In various environments, the diagenesis rate is, to some degree, affected by OC, pH, Eh, and Es.展开更多
Double-and triple-cropping in a year have played a very important role in meeting the rising need for food in China.However,the intensified agricultural practices have significantly altered biogeochemical cycles and s...Double-and triple-cropping in a year have played a very important role in meeting the rising need for food in China.However,the intensified agricultural practices have significantly altered biogeochemical cycles and soil quality.Understanding and mapping cropping intensity in China′s agricultural systems are therefore necessary to better estimate carbon,nitrogen and water fluxes within agro-ecosystems on the national scale.In this study,we investigated the spatial pattern of crop calendar and multiple cropping rotations in China using phenological records from 394 agro-meteorological stations(AMSs)across China.The results from the analysis of in situ field observations were used to develop a new algorithm that identifies the spatial distribution of multiple cropping in China from moderate resolution imaging spectroradiometer(MODIS)time series data with a 500 m spatial resolution and an 8-day temporal resolution.According to the MODIS-derived multiple cropping distribution in 2002,the proportion of cropland cultivated with multiple crops reached 34%in China.Double-cropping accounted for approximately 94.6%and triple-cropping for 5.4%.The results demonstrat that MODIS EVI(Enhanced Vegetation Index)time series data have the capability and potential to delineate the dynamics of double-and triple-cropping practices.The resultant multiple cropping map could be used to evaluate the impacts of agricultural intensification on biogeochemical cycles.展开更多
Soil carbon and nutrient contents and their importance in advancing our understanding of biogeochemical cycling in terrestrial ecosystem, has motivated ecologists to find their spatial patterns in various geographical...Soil carbon and nutrient contents and their importance in advancing our understanding of biogeochemical cycling in terrestrial ecosystem, has motivated ecologists to find their spatial patterns in various geographical area. Few studies have focused on changes in the physical and chemical properties of soils at high altitudes. Our aim was to identify the spatial distribution of soil physical and chemical properties in cold and arid climatic region. We also tried to explore relationship between soil organic carbon (SOC) and total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), soil particle size distribution (PSD). Samples were collected at 44 sites along a 300 km transect across the alpine grassland of northern Tibet. The study results showed that grassland type was the main factor influencing SOC, TN and TP distribution along the Gangdise Mountain-Shenzha-Shuanghu Transect. SOC, TN and TP contents were significantly higher in alpine meadow than alpine steppe ecosystems. SOC, TN, TP and AN contents in two soil layers (0-15 cm and 15-3o cm) showed no significant differences, while AP content in top soft (0-15 cm) was significantly higher than that in sub-top soil (15-30cm). SOC content was correlated positively with TN and TP content (r = 0.901and 0.510, respectively). No correlations were detected for clay content and fractal dimension of particle size distribution (D). Our study results indicated the effects of vegetation on soil C, N and P seem to be more important than that of rocks itself along latitude gradient on the northern Tibetan Plateau. However, we did not found similar impacts of vegetation on soil properties in depth. Inaddition, this study also provided an interesting contribution to the global data pool on soil carbon stocks.展开更多
Stable isotope techniques have been proved useful as tools for studying the carbon (C) and nitrogen (N) biogeochemical cycles of ecosystem. This paper firstly introduced the basic principles and the distribution chara...Stable isotope techniques have been proved useful as tools for studying the carbon (C) and nitrogen (N) biogeochemical cycles of ecosystem. This paper firstly introduced the basic principles and the distribution characteristics of stable isotope, then reviewed the recent advances and applications of stable isotope in the C and N biogeochemical cycles of ecosystem. By applying the 13 C natural abundance technique, ecologists are able to understand the photosynthetic path and CO 2 fixation of plants, the CO 2 exchange and C balance status of ecosystem, the composition, distribution and turnover of soil organic C and the sources of organic matter in food webs, while by using the 13 C labeled technique, the effects of elevated CO 2 on the C processes of ecosystem and the sources and fate of organic matter in ecosystem can be revealed in detail. Differently, by applying the 15 N natural abundance technique, ecologists are able to analyze the biological N 2 -fixation, the N sources of ecosystem, the N transformation processes of ecosystem and the N trophic status in food webs, while by using the 15 N labeled technique, the sources, transformation and fate of N in ecosystem and the effects of N input on the ecosystem can be investigated in depth. The applications of both C and N isotope natural abundance and labeled techniques, combined with the elemental, other isotope ( 34 S) and molecular biomarker information, will be more propitious to the investigation of C and N cycle mechanisms. Finally, this paper concluded the problems existed in current researches, and put forward the perspective of stable isotope techniques in the studies on C and N biogeochemical cycles of ecosystem in the future.展开更多
Due to their particular physiology and life history traits, bryophytes are critical in regulating biogeochemical cycles and functions in alpine ecosystem. Hence, it is crucial to investigate their nutrient utilization...Due to their particular physiology and life history traits, bryophytes are critical in regulating biogeochemical cycles and functions in alpine ecosystem. Hence, it is crucial to investigate their nutrient utilization strategies in comparison with vascular plants and understand their responses to the variation of growing season caused by climate change. Firstly, this study testified whether or not bryophytes can absorb nitrogen(N) directly from soil through spiking three chemical forms of 15N stable isotope tracer. Secondly, with stronger ability of carbohydrates assimilation and photosynthesis, it is supposed that N utilization efficiency of vascular plants is significantly higher than that of bryophytes. However, the recovery of soil N by bryophytes can still compete with vascular plants due to their greater phytomass. Thirdly, resource acquisition may be varied from the change of growing season, during which N pulse can be manipulated with 15N tracer addition at different time. Both of bryophytes and vascular plants contain more N in a longer growing season, and prefer inorganic over organic N. Bryophytes assimilate more NH4+ than NO3– and amino acid, which can be indicated from the greater shoot excess 15N of bryophytes. However, vascular plants prefer to absorb NO3– for their developed root systems and vascular tissue. Concerning the uptake of three forms N by bryophytes, there is significant difference between two manipulated lengths of growing season. Furthermore, the capacity of bryophytes to tolerate N-pollution may be lower than currently appreciated, which indicates the effect of climate change on asynchronous variation of soil N pools with plant requirements.展开更多
High performance liquid chromatography (HPLC) analysis of photosynthetic pigments in samples from Western Xiamen Bay and the Jiulong River Estuary showed that their major carotenoids were fucoxanthin, peridinin, zeaxa...High performance liquid chromatography (HPLC) analysis of photosynthetic pigments in samples from Western Xiamen Bay and the Jiulong River Estuary showed that their major carotenoids were fucoxanthin, peridinin, zeaxanthin, violaxanthin, and diadinoxanthin. Diatoms dominated in the spring bloom, dinoflagellates in summer. Violaxanthin and chlorophyll b indicated the appearance of chrysophytes and green algae, most of which were freshwater species. The high phytoplankton biomass region was located at the inner part of the bay. Diatoms and dinoflagellates dominated phytoplankton communities, contributing to over 50% of total biomass. All the main diagnostic carotenoids were significantly (P<0.01) correlated negatively to dissolved inorganic phosphorus, suggesting that they were limited by phosphorus. The high negative linear relationship (P<0.0001) between dissolved inorganic phosphorus and peridinin (dinoflagellates indicator) implied the potential of dissolved inorganic phosphorus for triggering red tide events in this region.展开更多
Seasonal variations in the nitrogen isotopic composition of dissolved nitrate (δ15NO3) were investigated in the surface waters of the Changjiang River estuary in 2009 and 2010. δ15NO3 varied between -4.6‰ and 8.9...Seasonal variations in the nitrogen isotopic composition of dissolved nitrate (δ15NO3) were investigated in the surface waters of the Changjiang River estuary in 2009 and 2010. δ15NO3 varied between -4.6‰ and 8.9%0 with changes in temperature, salinity, dissolved oxygen concentrations, and the composition of the dissolved inorganic nitrogen pool. In February, biological processes decreased because of low temperature, and the mean δ15NO3 near the river mouth was 2.4%0. In May, δ15NO3 was the highest in the surface waters among all seasons. Analysis on the conservative mixing revealed assimilation, and this finding is supported by positive relationship between Chl a and δ15NO3. The fractionation factor of assimilation was estimated to be 2.0‰ by the Rayleigh equation. Nitrification was supported based on the mixing behaviors in November 2010 and the low δ15NO3 values in May and November 2009. The high ammonium concentrations in the adjacent marine area and positive relationships between total organic nitrogen and δ15NO3 in November 2010 indicated that mineralization was taking place.展开更多
Magnetotactic bacteria are a diverse group of motile prokaryotes that are ubiquitous in aquatic habitats and cosmopolitan in distribution. In this study, we collected magnetotactic bacteria from the Mediterranean Sea....Magnetotactic bacteria are a diverse group of motile prokaryotes that are ubiquitous in aquatic habitats and cosmopolitan in distribution. In this study, we collected magnetotactic bacteria from the Mediterranean Sea. A remarkable diversity of morphotypes was observed, including multicellular types that seemed to differ from those previously found in North and South America. Another interesting organism was one with magnetosomes arranged in a six-stranded bundle which occupied one third of the cell width. The magnetosome bundle was evident even under optic microscopy. These cells were connected together and swam as a linear entire unit. Magnetosomes did not always align up to form a straight linear chain. A chain composed of rectangle magnetosomes bent at a posi- tion with an oval crystal. High resolution transmission electron microscopy analysis of the crystal at the pivotal position suggested uncompleted formation of the crystal. This is the first report of Mediterranean magnetotactic bacteria, which should be useful for studies of biogeochemical cycling and geohistory of the Mediterranean Sea.展开更多
Based on the biogeochemical studies on nutrient elements in the Changjiang estuary, the main results and recent progresses are reviewed in this paper, such as the nutrient fluxes into the sea, the mixing behaviors, th...Based on the biogeochemical studies on nutrient elements in the Changjiang estuary, the main results and recent progresses are reviewed in this paper, such as the nutrient fluxes into the sea, the mixing behaviors, the distribution characteristics and transportation as well as the biogeochemical behaviors of nutrients in the plume frontal region. The exploring directions and research emphases in the future are proposed.展开更多
Phosphorus(P),as a limiting nutrient,plays a crucial role in the mountainous ecosystem development.Its biogeochemical cycle in mountainous ecosystems determines the bioavailability and sustainable supply of P,and thus...Phosphorus(P),as a limiting nutrient,plays a crucial role in the mountainous ecosystem development.Its biogeochemical cycle in mountainous ecosystems determines the bioavailability and sustainable supply of P,and thus becomes a crucial process which needs to be fully understood and described for ecological and environmental conservation.However,most of research about P biogeochemical processes has been carried out in aquatic environment and agronomic field,but rare researches have been done in mountain ecosystem.In the present review,we summarize researches on P biogeochemical cycle concerning mountain ecosystem in recent decades,including rock weathering,the release,transformation and bioavailability of P,interactions between the P biological cycle and microbial and plant life,as well as the development of models.Based on the state of art,we propose the future work on this direction,including the integration of all these research,the development of a practical model to understand the P biogeochemical cycle and its bioavailability,and to provide a reference for ecological and environmental conservation of mountainous ecosystems and lowland aquatic systems.展开更多
How to accurately simulate the distribution of forest species based upon their biological attributes has been a traditional biogeographical issue.Forest gap models are very useful tools for examining the dynamics of f...How to accurately simulate the distribution of forest species based upon their biological attributes has been a traditional biogeographical issue.Forest gap models are very useful tools for examining the dynamics of forest succession and revealing the species structure of vegetation.In the present study,the GFSM(Gongga Forest Succession Model) was developed and applied to simulate the distribution,composition and succession process of forests in 100 m elevation intervals.The results indicate that the simulated results of the tree species,quantities of the different types of trees,tree age and differences in DBH(diameter at breast height) composition were in line with the actual situation from 1400 to 3700 MASL(meters above sea level) on the eastern slope of Mt.Gongga.Moreover,the dominant species in the simulated results were the same as those in the surveyed database.Thus,the GFSM model can best simulate the features of forest dynamics and structure in the natural conditions of Mt.Gongga.The work provides a new approach to studying the structure and distribution characteristics of mountain ecosystems in varied elevations.Moreover,the results of this study suggest that the biogeochemistry mechanism model should be combined with the forestsuccession model to facilitate the ecological model in simulating the physical and chemical processes involved.展开更多
The Henry's Law constant (k) for phosphine in seawater was determined by multiple phase equilibration combined with headspace gas chromatography. The effects of pH, temperature, and salinity on k were studied. The ...The Henry's Law constant (k) for phosphine in seawater was determined by multiple phase equilibration combined with headspace gas chromatography. The effects of pH, temperature, and salinity on k were studied. The k value for phosphine in natural seawater was 6.415 at room temperature (approximately 23℃). This value increases with increases in temperature and salinity, but no obvious change was observed at different pH levels. At the same temperature, there was no significant difference between the k for phosphine in natural seawater and that in artificial seawater. This implies that temperature and salinity are major determining factors for k in marine environment. Double linear regression with Henry's Law constants for phosphine as a function of temperature and salinity confirmed our observations. These results provide a basis for the measurement of trace phosphine concentrations in seawater, and will be helpful for future research on the status of phosphine in the oceanic biogeochemical cycle of phosphorus.展开更多
The downward shortwave radiation(DSR) is an essential parameter of land surface radiation budget and many land surface models that characterize hydrological,ecological and biogeochemical processes.The new Global LAnd ...The downward shortwave radiation(DSR) is an essential parameter of land surface radiation budget and many land surface models that characterize hydrological,ecological and biogeochemical processes.The new Global LAnd Surface Satellite(GLASS) DSR datasets have been generated recently using multiple satellite data in China.This study investigates the performances of direct comparison approach,which is mostly used for validation of surface insolation retrieved from satellite data over the plain area,and indirect comparison approach,which needs a fine resolution map of DSR as reference,for validation of GLASS DSR product in time-steps of 1 and 3 hours over three Chinese Ecosystem Research Network sites located in the rugged surface.Results suggest that it probably has a large uncertainty to assess GLASS DSR product using the direct comparison method between GLASS surface insolation and field measurements over complex terrain,especially at Mt.Gongga 3,000 m station with root mean square error of 279.04 and 229.06 W/m2in time-steps of 1 and 3 hours,respectively.Further improvement for validation of GLASS DSR product in the rugged surface is suggested by generation of a fine resolution map of surface insolation and comparison of the aggregated fine resolution map with GLASS product in the rugged surface.The validation experience demonstrates that the GLASS DSR algorithm is satisfactory with determination coefficient of 0.83 and root mean square error of 81.91W/m2over three Chinese Ecosystem Research Network sites,although GLASS product overestimates DSR compared to the aggregated fine resolution map of surface insolation.展开更多
Suspended particulate substances were sampled in the eastem equatorial Pacific in water column from surface to near bottom in five stations in 2005, from which 868 barite crystals were recovered. The barite crystals w...Suspended particulate substances were sampled in the eastem equatorial Pacific in water column from surface to near bottom in five stations in 2005, from which 868 barite crystals were recovered. The barite crystals were examined under scanning electron microscopy. About 61% of the total barites crystals contained detectable Sr by energy dispersive X-ray spectrometry. Barite crystals could be classified into four groups based on their morphology: 1) bladed; 2) ovoid or rounded; 3) arrow-like; and 4) irregularly shaped. The arrow-like barite crystals in natural environment has never been reported before. In addition, about a half of the studied crystals showed features of dissolution as cavities or holes inside of the crystals or around their edges. We found that differential dissolution of barite crystals is consequence of heterogeneous Sr distribution in barite crystals. Our results would help in understanding the biogeochemical processes of marine barite formation and preservation in seawater and marine sediments.展开更多
The decomposition of plant litter is a key process of litter decomposition to global climate warming in plateau in the flows of energy and nutrients in ecosystems. However, the response wetlands remains largely unknow...The decomposition of plant litter is a key process of litter decomposition to global climate warming in plateau in the flows of energy and nutrients in ecosystems. However, the response wetlands remains largely unknown. In this study, we conducted a one-year litter decomposition experiment along an elevation gradient from 1891 m to 3260 m on the Yurman Plateau of Southwest China, using different litter types to determine the influences of climate change, litter quality and microenvironment on the decomposition rate. The results showed that the average decomposition rate (K) increased from 0.608 to 1.152, and the temperature sensitivity of litter mass losses was approximately 4.98%/℃ along the declining elevation gradient. Based on a correlation analysis, N concentrations and C : N ratios in the litter were the best predictors of the decomposition rate, with significantly positive and negative correlations, respectively. Additionally, the cumulative effects of decomposition were clearly observed in the mixtures of Scirpus tabernaemontani and Zizania caduciflora. Moreover, the litter decomposition rate in the water was higher than that in the sediment, especially in high-elevation areas where the microenvironment was significantly affected by temperature. These results suggest that future climate warming will have significant impacts on plateau wetlands, which have important fimctions in biogeochemical cycling in cold highland ecosystems.展开更多
Based on the author’s previously obtained results on P and Si forms in southern Bohai Sea surface sediments,this study mainly foucusing on the controlling factors, existence forms, and biogeochemical processes of P a...Based on the author’s previously obtained results on P and Si forms in southern Bohai Sea surface sediments,this study mainly foucusing on the controlling factors, existence forms, and biogeochemical processes of P and Si showed that the transferable forms of phosphorus in sediments were mainly controlled by the mineralization of organic matters and the reduction of high valence iron; whereas the transferable forms of silicon were possibly controlled by the dissolution and precipitation as well as biochemical processes of living organisms.展开更多
Topography and land use affect soil organic carbon(SOC) storage, stabilization, and turnover, through several biogeochemical processes. This study investigated the aggregate composition and SOC content of bulk soils a...Topography and land use affect soil organic carbon(SOC) storage, stabilization, and turnover, through several biogeochemical processes. This study investigated the aggregate composition and SOC content of bulk soils and aggregates at different slope positions under different land uses in a typical karst catchment of southwestern China. Our results show that the proportion of macro-aggregates and the SOC content of bulk soils and aggregates at different slope positions decreased from the upper to the lower slope. The SOC content generally increased with an increase in the mean weight diameter and proportion of macro-aggregates under different land uses. Our results indicate that macro-aggregates in forest and grassland soils make a greater contribution to both aggregate composition and SOC content than that in arable land soils. Therefore,converting farmland to forest or grassland can facilitate the accumulation of macro-aggregates as well as the storage of SOC.展开更多
基金Project supported by the Natural Science Foundation of Jiangsu Province (No.JSNSF 20050307)the National Natural Science Foundation of China (No.NSFC 30470326).
文摘Spartina alterniflora Loisel, a species vegetating in intertidal flats along the eastern coast of the United States, was introduced in China almost 30 years ago and has become an urgent topic due to its invasiveness in the coastal zone of China. The impacts of this alien species S. alterniflora on intertidal ecosystem processes in the Jiangsu coastland were investigated by comparing the sediment nutrient availability and trace element concentration characteristics in a mud flat and those of a four-year old Spartina salt marsh that had earlier been a mudflat. At each study site, fifteen plots were sampled in different seasons to determine the sediment characteristics along the tidal flats. The results suggested that Spartina salt marsh sediments had significantly higher total N, available P, and water content, but lower pH and bulk density than mudflat sediments. Sediment salinity, water content, total N, organic C, and available P decreased along a seaward gradient in the Spartina salt marsh and increased with vegetation biomass. Furthermore, the concentrations of trace elements and some metal elements in the sediment were higher under Spartina although these increases were not significant. Also, in the Spartina marsh, some heavy metals were concentrated in the surface layer of the sediment. The Spartina salt marsh in this study was only four years old; therefore, it is suggested that further study of this allen species on a longer time frame in the Jiangsu coastland should be carried out.
文摘Comprehensive study on land-use change of spatial pattern and temporal process is the key component in LUCC study nowadays. Based on the theories and methods of Geo-information Tupu (Carto-methodology in Geo-information, CMGI), integration of spatial pattern and temporal processes of land-use change in the Yellow River Delta (YRD) are studied in the paper, which is supported by ERDAS and ARC/INFO software. The main contents include: (1) concept models of Tupu by spatial-temporal integration on land-use change, whose Tupu unit is synthesized by "Spatial·Attribute·Process" features and composed of relatively homogeneous geographical unit and temporal unit; (2) data sources and handling process, where four stages of spatial features in 1956, 1984, 1991, and 1996 are acquired; (3) integration of series of temporal-spatial Tupu, reconstruction series of "Arising" Tupu, spatial-temporal Process Tupu and the spatial temporal Pattern Tupu on land-use change by remap tables; (4) Pattern Tupu analysis on land-use change in YRD during 1956-1996; and (5) spatial difference of the Pattern Tupu analysis by dynamic Tupu units. The various landform units and seven sub-deltas generated by the Yellow River since 1855 are different. The Tupu analysis on land-use in the paper is a promising try on the comprehensive research of "spatial pattern of dynamic process" and "temporal process of spatial pattern" in LUCC research. The Tupu methodology would be a powerful and efficient tool on integrated studies of spatial pattern and temporal process in Geo-science.
基金the National Key Project for Basic Research of China (Contract No. 2007CB407305)Qingdao Special Project for Outstanding Scientists (Grant No. 05-2-JC-90)the "The 100-Talent Project" of Chinese Academy of Sciences, and the Knowledge Innovation Program of Chinese Academy of Sciences (No.KZCX3-SW-214)
文摘Sediment samples were cored from 3 locations representing the inner bay, the outer bay and the bay mouth of Jiaozhou Bay in September 2003 to study the source and biogeochemical characteristics of nitrogen and phosphorus in the bay. The content and vertical distributions of total nitrogen (TN), total phosphorus (TP), organic nitrogen (ON), organic phosphorus (OP), inorganic nitrogen (IN), inorganic phosphorus (IP), the ratio of organic carbon and total nitrogen (OC/TN), and the ratio of total nitrogen and total phosphorus (TN/TP) in the sediments were analyzed. The results show that both TN and TP in surface sediments decrease from the inner bay to the outer bay. In general, ON occupies 50%?70% of TN and IP accounts for more than 60% of TP. In ratio of OC:TN, the nitrogen accumulated in the sediments from the inner bay and the bay mouth came mainly from terrestrial sources, and the portion of autogenetic nitrogen was 28.9% and 13.1%, respectively. However, in the outer bay, nitrogen was mainly autogenetic, accounting for 62.1% of TN, whereas phosphorus was mainly land-derived. The sedimentation fluxes of nitrogen and phosphorus varied spatially. The overall diagenesis rate of nitrogen was higher than that of phosphorus. Specifically, the diagenesis rate of OP was higher than that of IP. However, the diagenesis rate of ON was not always higher than that of IN. In species, the diagenesis rate of IN is sometimes much higher than that of the OC. In various environments, the diagenesis rate is, to some degree, affected by OC, pH, Eh, and Es.
基金Under the auspices of Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of Chinese Academy of Sciences(No.XDA05050602)Major State Basic Research Development Program of China(No.2010CB950904)+1 种基金National Natural Science Foundation of China(No.40921140410,41071344)Land Cover and Land Use Change Program of National Aeronautics and Space Administration,USA(No.NAG5-11160,NNG05GH80G)
文摘Double-and triple-cropping in a year have played a very important role in meeting the rising need for food in China.However,the intensified agricultural practices have significantly altered biogeochemical cycles and soil quality.Understanding and mapping cropping intensity in China′s agricultural systems are therefore necessary to better estimate carbon,nitrogen and water fluxes within agro-ecosystems on the national scale.In this study,we investigated the spatial pattern of crop calendar and multiple cropping rotations in China using phenological records from 394 agro-meteorological stations(AMSs)across China.The results from the analysis of in situ field observations were used to develop a new algorithm that identifies the spatial distribution of multiple cropping in China from moderate resolution imaging spectroradiometer(MODIS)time series data with a 500 m spatial resolution and an 8-day temporal resolution.According to the MODIS-derived multiple cropping distribution in 2002,the proportion of cropland cultivated with multiple crops reached 34%in China.Double-cropping accounted for approximately 94.6%and triple-cropping for 5.4%.The results demonstrat that MODIS EVI(Enhanced Vegetation Index)time series data have the capability and potential to delineate the dynamics of double-and triple-cropping practices.The resultant multiple cropping map could be used to evaluate the impacts of agricultural intensification on biogeochemical cycles.
基金supported by the Western Action Plan Project of the Chinese Academy of Sciences(Grant No.KZCX2-XB3-08)the Strategic Pilot Science and Technology Projects of Chinese Academy of Sciences(Grant No.XDB03030505)the One Hundred Young Persons Project of the Institute of Mountain Hazards and Environment(Grant No.SDSQB-2010-02)
文摘Soil carbon and nutrient contents and their importance in advancing our understanding of biogeochemical cycling in terrestrial ecosystem, has motivated ecologists to find their spatial patterns in various geographical area. Few studies have focused on changes in the physical and chemical properties of soils at high altitudes. Our aim was to identify the spatial distribution of soil physical and chemical properties in cold and arid climatic region. We also tried to explore relationship between soil organic carbon (SOC) and total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), soil particle size distribution (PSD). Samples were collected at 44 sites along a 300 km transect across the alpine grassland of northern Tibet. The study results showed that grassland type was the main factor influencing SOC, TN and TP distribution along the Gangdise Mountain-Shenzha-Shuanghu Transect. SOC, TN and TP contents were significantly higher in alpine meadow than alpine steppe ecosystems. SOC, TN, TP and AN contents in two soil layers (0-15 cm and 15-3o cm) showed no significant differences, while AP content in top soft (0-15 cm) was significantly higher than that in sub-top soil (15-30cm). SOC content was correlated positively with TN and TP content (r = 0.901and 0.510, respectively). No correlations were detected for clay content and fractal dimension of particle size distribution (D). Our study results indicated the effects of vegetation on soil C, N and P seem to be more important than that of rocks itself along latitude gradient on the northern Tibetan Plateau. However, we did not found similar impacts of vegetation on soil properties in depth. Inaddition, this study also provided an interesting contribution to the global data pool on soil carbon stocks.
基金Under the auspices of Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-223)National Natural Science Foundation of China (No. 40803023)+1 种基金Key Program of Natural Science Foundation of Shandong Province(No. ZR2010DZ001)Talents Foundation of Chinese Academy of Sciences (No. AJ0809BX-036)
文摘Stable isotope techniques have been proved useful as tools for studying the carbon (C) and nitrogen (N) biogeochemical cycles of ecosystem. This paper firstly introduced the basic principles and the distribution characteristics of stable isotope, then reviewed the recent advances and applications of stable isotope in the C and N biogeochemical cycles of ecosystem. By applying the 13 C natural abundance technique, ecologists are able to understand the photosynthetic path and CO 2 fixation of plants, the CO 2 exchange and C balance status of ecosystem, the composition, distribution and turnover of soil organic C and the sources of organic matter in food webs, while by using the 13 C labeled technique, the effects of elevated CO 2 on the C processes of ecosystem and the sources and fate of organic matter in ecosystem can be revealed in detail. Differently, by applying the 15 N natural abundance technique, ecologists are able to analyze the biological N 2 -fixation, the N sources of ecosystem, the N transformation processes of ecosystem and the N trophic status in food webs, while by using the 15 N labeled technique, the sources, transformation and fate of N in ecosystem and the effects of N input on the ecosystem can be investigated in depth. The applications of both C and N isotope natural abundance and labeled techniques, combined with the elemental, other isotope ( 34 S) and molecular biomarker information, will be more propitious to the investigation of C and N cycle mechanisms. Finally, this paper concluded the problems existed in current researches, and put forward the perspective of stable isotope techniques in the studies on C and N biogeochemical cycles of ecosystem in the future.
基金the National Natural Science Foundation Youth Project of China (Grant No.31100358)the "Strategic Priority Research Program-Climate Change:Carbon Budget and Related Issues" of the Chinese Academy of Sciences (Grant No. XDA05050307)+1 种基金Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period"Vegetation Stabilization Techniques of Alpine Forest-Grassland Ecotone" (Grant No. 2011BAC09 B04-02-03)International Science & Technology Cooperation Program of China (Grant No. 2013DFR90670) for fund support
文摘Due to their particular physiology and life history traits, bryophytes are critical in regulating biogeochemical cycles and functions in alpine ecosystem. Hence, it is crucial to investigate their nutrient utilization strategies in comparison with vascular plants and understand their responses to the variation of growing season caused by climate change. Firstly, this study testified whether or not bryophytes can absorb nitrogen(N) directly from soil through spiking three chemical forms of 15N stable isotope tracer. Secondly, with stronger ability of carbohydrates assimilation and photosynthesis, it is supposed that N utilization efficiency of vascular plants is significantly higher than that of bryophytes. However, the recovery of soil N by bryophytes can still compete with vascular plants due to their greater phytomass. Thirdly, resource acquisition may be varied from the change of growing season, during which N pulse can be manipulated with 15N tracer addition at different time. Both of bryophytes and vascular plants contain more N in a longer growing season, and prefer inorganic over organic N. Bryophytes assimilate more NH4+ than NO3– and amino acid, which can be indicated from the greater shoot excess 15N of bryophytes. However, vascular plants prefer to absorb NO3– for their developed root systems and vascular tissue. Concerning the uptake of three forms N by bryophytes, there is significant difference between two manipulated lengths of growing season. Furthermore, the capacity of bryophytes to tolerate N-pollution may be lower than currently appreciated, which indicates the effect of climate change on asynchronous variation of soil N pools with plant requirements.
文摘High performance liquid chromatography (HPLC) analysis of photosynthetic pigments in samples from Western Xiamen Bay and the Jiulong River Estuary showed that their major carotenoids were fucoxanthin, peridinin, zeaxanthin, violaxanthin, and diadinoxanthin. Diatoms dominated in the spring bloom, dinoflagellates in summer. Violaxanthin and chlorophyll b indicated the appearance of chrysophytes and green algae, most of which were freshwater species. The high phytoplankton biomass region was located at the inner part of the bay. Diatoms and dinoflagellates dominated phytoplankton communities, contributing to over 50% of total biomass. All the main diagnostic carotenoids were significantly (P<0.01) correlated negatively to dissolved inorganic phosphorus, suggesting that they were limited by phosphorus. The high negative linear relationship (P<0.0001) between dissolved inorganic phosphorus and peridinin (dinoflagellates indicator) implied the potential of dissolved inorganic phosphorus for triggering red tide events in this region.
基金Supported by the National Natural Science Foundation of China(No.41276116)the Fund for Creative Research Groups by NSFC(No.41121064)the National Basic Research Program of China(973 Program)(No.2010CB428706)
文摘Seasonal variations in the nitrogen isotopic composition of dissolved nitrate (δ15NO3) were investigated in the surface waters of the Changjiang River estuary in 2009 and 2010. δ15NO3 varied between -4.6‰ and 8.9%0 with changes in temperature, salinity, dissolved oxygen concentrations, and the composition of the dissolved inorganic nitrogen pool. In February, biological processes decreased because of low temperature, and the mean δ15NO3 near the river mouth was 2.4%0. In May, δ15NO3 was the highest in the surface waters among all seasons. Analysis on the conservative mixing revealed assimilation, and this finding is supported by positive relationship between Chl a and δ15NO3. The fractionation factor of assimilation was estimated to be 2.0‰ by the Rayleigh equation. Nitrification was supported based on the mixing behaviors in November 2010 and the low δ15NO3 values in May and November 2009. The high ammonium concentrations in the adjacent marine area and positive relationships between total organic nitrogen and δ15NO3 in November 2010 indicated that mineralization was taking place.
文摘Magnetotactic bacteria are a diverse group of motile prokaryotes that are ubiquitous in aquatic habitats and cosmopolitan in distribution. In this study, we collected magnetotactic bacteria from the Mediterranean Sea. A remarkable diversity of morphotypes was observed, including multicellular types that seemed to differ from those previously found in North and South America. Another interesting organism was one with magnetosomes arranged in a six-stranded bundle which occupied one third of the cell width. The magnetosome bundle was evident even under optic microscopy. These cells were connected together and swam as a linear entire unit. Magnetosomes did not always align up to form a straight linear chain. A chain composed of rectangle magnetosomes bent at a posi- tion with an oval crystal. High resolution transmission electron microscopy analysis of the crystal at the pivotal position suggested uncompleted formation of the crystal. This is the first report of Mediterranean magnetotactic bacteria, which should be useful for studies of biogeochemical cycling and geohistory of the Mediterranean Sea.
基金The paper was supported by the National Science Foundation of China projects(40076022)the National Basic Research Program of China(001CB409703).
文摘Based on the biogeochemical studies on nutrient elements in the Changjiang estuary, the main results and recent progresses are reviewed in this paper, such as the nutrient fluxes into the sea, the mixing behaviors, the distribution characteristics and transportation as well as the biogeochemical behaviors of nutrients in the plume frontal region. The exploring directions and research emphases in the future are proposed.
基金funded by Chinese Academy of Sciences (Grant Nos. KZCX2-YW-BR-21 and KZZD-EW-TZ-06)Natural Science Foundation of China (Grant No. 41272200)
文摘Phosphorus(P),as a limiting nutrient,plays a crucial role in the mountainous ecosystem development.Its biogeochemical cycle in mountainous ecosystems determines the bioavailability and sustainable supply of P,and thus becomes a crucial process which needs to be fully understood and described for ecological and environmental conservation.However,most of research about P biogeochemical processes has been carried out in aquatic environment and agronomic field,but rare researches have been done in mountain ecosystem.In the present review,we summarize researches on P biogeochemical cycle concerning mountain ecosystem in recent decades,including rock weathering,the release,transformation and bioavailability of P,interactions between the P biological cycle and microbial and plant life,as well as the development of models.Based on the state of art,we propose the future work on this direction,including the integration of all these research,the development of a practical model to understand the P biogeochemical cycle and its bioavailability,and to provide a reference for ecological and environmental conservation of mountainous ecosystems and lowland aquatic systems.
基金funded by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-XB3-08)the National Natural Science Foundation of China (31070405)
文摘How to accurately simulate the distribution of forest species based upon their biological attributes has been a traditional biogeographical issue.Forest gap models are very useful tools for examining the dynamics of forest succession and revealing the species structure of vegetation.In the present study,the GFSM(Gongga Forest Succession Model) was developed and applied to simulate the distribution,composition and succession process of forests in 100 m elevation intervals.The results indicate that the simulated results of the tree species,quantities of the different types of trees,tree age and differences in DBH(diameter at breast height) composition were in line with the actual situation from 1400 to 3700 MASL(meters above sea level) on the eastern slope of Mt.Gongga.Moreover,the dominant species in the simulated results were the same as those in the surveyed database.Thus,the GFSM model can best simulate the features of forest dynamics and structure in the natural conditions of Mt.Gongga.The work provides a new approach to studying the structure and distribution characteristics of mountain ecosystems in varied elevations.Moreover,the results of this study suggest that the biogeochemistry mechanism model should be combined with the forestsuccession model to facilitate the ecological model in simulating the physical and chemical processes involved.
基金Supported by the National Natural Science Foundation of China (Nos.30970522,40576058)the National Natural Science Foundation of China for Creative Research Groups (No.41121064)
文摘The Henry's Law constant (k) for phosphine in seawater was determined by multiple phase equilibration combined with headspace gas chromatography. The effects of pH, temperature, and salinity on k were studied. The k value for phosphine in natural seawater was 6.415 at room temperature (approximately 23℃). This value increases with increases in temperature and salinity, but no obvious change was observed at different pH levels. At the same temperature, there was no significant difference between the k for phosphine in natural seawater and that in artificial seawater. This implies that temperature and salinity are major determining factors for k in marine environment. Double linear regression with Henry's Law constants for phosphine as a function of temperature and salinity confirmed our observations. These results provide a basis for the measurement of trace phosphine concentrations in seawater, and will be helpful for future research on the status of phosphine in the oceanic biogeochemical cycle of phosphorus.
基金supported jointly by the "Hundred Talents" Projects of Chinese Academy of Sciences (CAS) and Sichuan ProvinceStrategic Priority Research Program-Climate Change: Carbon Budget and Related Issues (Grant No. XDA05050105)+2 种基金International Cooperation Partner Program of Innovative Team, CAS (Grant No. KZZD-EW-TZ-06)Open Foundation of BNU Center for Global Change Data Processing and AnalysisYoung Foundation of Institute of Mountain Hazards and Environment, CAS
文摘The downward shortwave radiation(DSR) is an essential parameter of land surface radiation budget and many land surface models that characterize hydrological,ecological and biogeochemical processes.The new Global LAnd Surface Satellite(GLASS) DSR datasets have been generated recently using multiple satellite data in China.This study investigates the performances of direct comparison approach,which is mostly used for validation of surface insolation retrieved from satellite data over the plain area,and indirect comparison approach,which needs a fine resolution map of DSR as reference,for validation of GLASS DSR product in time-steps of 1 and 3 hours over three Chinese Ecosystem Research Network sites located in the rugged surface.Results suggest that it probably has a large uncertainty to assess GLASS DSR product using the direct comparison method between GLASS surface insolation and field measurements over complex terrain,especially at Mt.Gongga 3,000 m station with root mean square error of 279.04 and 229.06 W/m2in time-steps of 1 and 3 hours,respectively.Further improvement for validation of GLASS DSR product in the rugged surface is suggested by generation of a fine resolution map of surface insolation and comparison of the aggregated fine resolution map with GLASS product in the rugged surface.The validation experience demonstrates that the GLASS DSR algorithm is satisfactory with determination coefficient of 0.83 and root mean square error of 81.91W/m2over three Chinese Ecosystem Research Network sites,although GLASS product overestimates DSR compared to the aggregated fine resolution map of surface insolation.
基金Supported by the China Ocean Mineral Resources R&D Association(Mas,DYXM-115-02-1-13,DYXM-115-01-3-04)
文摘Suspended particulate substances were sampled in the eastem equatorial Pacific in water column from surface to near bottom in five stations in 2005, from which 868 barite crystals were recovered. The barite crystals were examined under scanning electron microscopy. About 61% of the total barites crystals contained detectable Sr by energy dispersive X-ray spectrometry. Barite crystals could be classified into four groups based on their morphology: 1) bladed; 2) ovoid or rounded; 3) arrow-like; and 4) irregularly shaped. The arrow-like barite crystals in natural environment has never been reported before. In addition, about a half of the studied crystals showed features of dissolution as cavities or holes inside of the crystals or around their edges. We found that differential dissolution of barite crystals is consequence of heterogeneous Sr distribution in barite crystals. Our results would help in understanding the biogeochemical processes of marine barite formation and preservation in seawater and marine sediments.
基金Under the auspices of Special Projects of National Key Basic Research Program of China(No.2012CB426509)National Natural Science Foundation of China(No.40971285,31370497,31500409)Yunnan Innovation Talents of Science and Technology Plan of China(No.2012HC007)
文摘The decomposition of plant litter is a key process of litter decomposition to global climate warming in plateau in the flows of energy and nutrients in ecosystems. However, the response wetlands remains largely unknown. In this study, we conducted a one-year litter decomposition experiment along an elevation gradient from 1891 m to 3260 m on the Yurman Plateau of Southwest China, using different litter types to determine the influences of climate change, litter quality and microenvironment on the decomposition rate. The results showed that the average decomposition rate (K) increased from 0.608 to 1.152, and the temperature sensitivity of litter mass losses was approximately 4.98%/℃ along the declining elevation gradient. Based on a correlation analysis, N concentrations and C : N ratios in the litter were the best predictors of the decomposition rate, with significantly positive and negative correlations, respectively. Additionally, the cumulative effects of decomposition were clearly observed in the mixtures of Scirpus tabernaemontani and Zizania caduciflora. Moreover, the litter decomposition rate in the water was higher than that in the sediment, especially in high-elevation areas where the microenvironment was significantly affected by temperature. These results suggest that future climate warming will have significant impacts on plateau wetlands, which have important fimctions in biogeochemical cycling in cold highland ecosystems.
文摘Based on the author’s previously obtained results on P and Si forms in southern Bohai Sea surface sediments,this study mainly foucusing on the controlling factors, existence forms, and biogeochemical processes of P and Si showed that the transferable forms of phosphorus in sediments were mainly controlled by the mineralization of organic matters and the reduction of high valence iron; whereas the transferable forms of silicon were possibly controlled by the dissolution and precipitation as well as biochemical processes of living organisms.
基金supported jointly by the National Natural Science Foundation of China(4132501041571130042)the State’s Key Project of Research and Development Plan of China(2016YFA0601002)
文摘Topography and land use affect soil organic carbon(SOC) storage, stabilization, and turnover, through several biogeochemical processes. This study investigated the aggregate composition and SOC content of bulk soils and aggregates at different slope positions under different land uses in a typical karst catchment of southwestern China. Our results show that the proportion of macro-aggregates and the SOC content of bulk soils and aggregates at different slope positions decreased from the upper to the lower slope. The SOC content generally increased with an increase in the mean weight diameter and proportion of macro-aggregates under different land uses. Our results indicate that macro-aggregates in forest and grassland soils make a greater contribution to both aggregate composition and SOC content than that in arable land soils. Therefore,converting farmland to forest or grassland can facilitate the accumulation of macro-aggregates as well as the storage of SOC.