Seven surveys were carried out in April, September, October, December 2006 and March, May, August 2007 in the Yellow Sea, China. Variations in the spatial and temporal distribution of Synechococcus, picoeukaryotes and...Seven surveys were carried out in April, September, October, December 2006 and March, May, August 2007 in the Yellow Sea, China. Variations in the spatial and temporal distribution of Synechococcus, picoeukaryotes and heterotrophic bacteria are quantified using flow cytometry. Synechococcus and heterotrophic bacteria are most abundant from late spring to autumn, while picoeukaryotes concentration is high in spring. Synechococcus and heterotrophic bacteria concentrated high in the northwest part of the Yellow Sea in spring and autumn, while picoeukaryotes distributed evenly over the whole study area except for a small frontal zone in the coastal area on the west (in spring) and central Yellow Sea (in autumn). Under mixing conditions, the vertical distribution of the three picoplankton groups showed a well-mixed pattern. Upon a well-established stratification, the maximum abundance of picoplankton occurred above the mixed layer depth (-30 m). Cell sizes of Synechococcus and picoeukaryotes were estimated by converting forward scatter signals (FSC) from cytometry analysis to cell diameter, showing the results of 0.65-0.82 um for Synechococcus and 0.85-1.08 um for picoeukaryotes. The average integrated carbon biomasses ranged 15.26-312.62 mgC/m2 for Synechococcus, 18.54-51.57 mgC/m2 for picoeukaryotes, and 402.63-818.46 mgC/m2 for heterotrophic bacteria. The distribution of Synechococcus and heterotrophic bacteria was temperature dependent, and picoplankton presence was poor in the Yellow Sea Cold Water Mass.展开更多
The spatio-temporal patterns of macrofaunal fouling assemblages were quantitatively investigated in the nearshore waters of the South China Sea.The work was undertaken by deploying seasonal panels at two sites(H-site,...The spatio-temporal patterns of macrofaunal fouling assemblages were quantitatively investigated in the nearshore waters of the South China Sea.The work was undertaken by deploying seasonal panels at two sites(H-site,L-site) for one year,and the fouling communities on the panels were examined and analyzed.The results indicated that species composition of assemblages was obviously different between the two sites.At both sites the assemblages were characteristic with solitary dominant species throughout the year,with Amphibalanus reticulates dominating at H-site and Hydroides elegans at L-site.Shannon index and biomass of the assemblages varied with depth and season at both sites.At H-site the total biomass in summer and autumn were significantly higher than those in spring and winter,while at L-site the assemblage biomass also differed significantly among the four seasons,and the greatest biomass occurred at the depth of 2.0 m in winter.The abundance of all seasonal samples in non-metric multidimensional scaling was clustered as one group at L-site and three groups at H-site.The environmental factors were more likely to be related to the variation of fouling assemblages.Furthermore,it also suggests that in tropical seas the integrated adaptability would qualify a species for dominating a fouling assemblage despite its short life cycle,rather than the usually assumed only species with long life span.This study reveals the complexity and characteristic dynamics of macrofaunal fouling assemblages in the tropical habitats,and the results would provide valuable knowledge for biodiversity and antifouling research.展开更多
Assessing the impact of climate change is important for ecosystem conservation and plant recovery, especially in climate sensitive regions. Various studies suggested that the KSppen classification is an effective meth...Assessing the impact of climate change is important for ecosystem conservation and plant recovery, especially in climate sensitive regions. Various studies suggested that the KSppen classification is an effective method to depict climate change. However, these studies were restricted to large scales or of limited accuracy due to uncertainties in climate model projections. In addition, the impact of elevation on the shift of climate zones, as compared with other factors, is less emphasized. To address these issues we compiled the KSppen Climate Classification (period 1961-2olo) for the study area, Sichuan Province, China. The spatial resolution was selected as x km x x km. Sichuan Province may be characterized by 3 main climate classes and 1o subtypes. The east-west gradient of the climatic regimes in Siehuan is represented by the main climate classes, warm temperate climates (C), snow climates (D) and polar climates (E), at which the most abundant class is C. The most abundant subtype is snow climate with dry winter and cool summer (Dwe). Shifts in K/Sppen climate classes reflect the observed trend of increasing temperature. Finally, the elevation showed an obvious impact on the distribution and the change of climate classes in Siehuan Province. The shift of areas covered by KSppen climate classes increases with elevation.展开更多
Correlation of megafauna extinctions and mega-biosphere disturbances with past supernova explosions has been accomplished by considering a time correction for supernova debris traveling at 88.2325 percent of light spe...Correlation of megafauna extinctions and mega-biosphere disturbances with past supernova explosions has been accomplished by considering a time correction for supernova debris traveling at 88.2325 percent of light speed. Supernova W44 is responsible for the Piora Oscillation which appears to be the biblical event of Noah's Flood. The closest supernova explosion, Vela Jr at 652 light-years, gives the beginning of the greatest historical human disaster, The Black Death. When supernova debris energy input occurs in the northern or southern hemisphere, it causes heating (global warming) in the northern or southern hemisphere, respectively. Long term cooling, the Little Ice Age, occurs in the northern hemisphere when the incoming debris of exploding stars impacts only the southern hemisphere for hundreds of years. Termination of the last ice age results due to melting of numerous supernova impacts that correlate time of impact by changing sea level and geothermal energy released for 2,800 years from the exit crater of Dr. J. Kennet's nano-diamond meteor theory and part of the process involves Dr. O'Keefe's tektite theory. Correlation of Dr Frezzotti's ice melt Antarctica data with supernova impact times over the past 800 years establishes the Global Warming model in conjunction with the November 2016 Antarctic sea ice melt.展开更多
Spatial distributions and seasonal variations of picoplankton (i.e. Synechococcus spp., Prochlorococcus spp., picoeukaryotes and heterotrophic bacteria) and viruses in the Changjiang estuary have been reported in the ...Spatial distributions and seasonal variations of picoplankton (i.e. Synechococcus spp., Prochlorococcus spp., picoeukaryotes and heterotrophic bacteria) and viruses in the Changjiang estuary have been reported in the past. However, short-term variations (e.g. at a tidal timescale) of these organisms and their regulating factors remain unclear. We determined the time-series of fluctuations of picoplankton and viruses with tide simultaneously in flow cytometry in the Changjiang estuary during a cruise in June 2006, in which a tidal model based rectangle equation was applied. The results indicate that high cell abundances of picoplankton and viruses occurred during flood tide and low cell abundances during ebb tide. The period of the surface cell abundance variations was about 13 h, suggesting the surface cell abundances in the Changjiang estuary were largely regulated by tide. However, cell abundances in middle and bottom waters varied in different periods due to influences of tidal induced physical forces such as resuspension and stratification. Therefore, tidal action is an important factor for the diel variations of picoplankton and viruses in the Changjiang estuary.展开更多
Salvia officinalis L. was cultivated in different geographic locations of Albania. Sage plants originated from imported seeds and wild Albanian plants. Around 30 chemical compounds were identified in the essential oil...Salvia officinalis L. was cultivated in different geographic locations of Albania. Sage plants originated from imported seeds and wild Albanian plants. Around 30 chemical compounds were identified in the essential oils of all cultivated sage plants; the latter were found to be very rich in camphen, fl-thujone, a-pinene, eucaliptol, rich to moderate in β-pinene and camphor, and less rich in a-thujone and limonene. Sharp differences in chemical composition patterns and content of individual chemical compounds were noticed between and within cultivation sites. Cultivated sage was poorer in α-thujone versus wild plants. Cultivated sage, of Albanian wild plants origin, was the richest in α-thujone (18.45%) versus imported seeds sage. β-thujone over-dominated α-thujone in all cultivated sage plants. Volatile characters of cultivated sage were indicative of the species but not of the geographic origin of plant material. Variation in essential oils composition and chemical compounds' content (biosynthetic pathways) in cultivated sage is related more to the genetic background than the environmental factors. If cultivating sage in Albania, then wild local ecotypes would be best to use as α-thujone is maintained at satisfactory levels, local natural base is preserved, unnecessary hybridization with imported seeds sage is prevented, and are more resistant and cost effective.展开更多
To better ascertain leaf, stem and flower traits, and analyze aboveground allocation during the vegetation period, three sampling vegetation transects were settled and reed samples were collected at intervals to deter...To better ascertain leaf, stem and flower traits, and analyze aboveground allocation during the vegetation period, three sampling vegetation transects were settled and reed samples were collected at intervals to determine morphological parameters and dry and wet weights in Jiaozhou Bay wetland. Remote sensing data were also combined to evaluate regional biomass through EVI regression models. Results show that growth dynamics of leaves and stems changed during the vegetation period. Stem length increased rapidly and peaked in September(194.40 ± 23.89 cm), whereas leaf width peaked in July. There was a significantly negative correlation between stem length and stem diameter with a value of-0.785. Stem biomass was higher than that of leaves, and the maximum value of aboveground biomass was 27.17 ± 3.56 g. F/C exhibited a tendency to increase and values ranged from 0.37–0.76. The aboveground biomass of sample plots reached a peak of 2356 ± 457 g/m^2 in September. EVI was 0.05–0.5; EVI and biomass had a better fitting effect using the power-exponent model compared with other models and its function was y = 4219.30 x^0.88(R^2 = 0.7810). R^2 of the other three models ranked as linear function〉 polynomial function 〉exponent function, with the values being 0.7769, 0.7623 and 0.6963, respectively. EVI can be used to estimate vegetation biomass, and effectively solved the problems of the destructive effect to sample plots resulting from traditional harvest methods.展开更多
Identifying the causes of diversification is central to evolutionary biology. The ecological theory of adaptive diversi- fication holds that the evolution of phenotypic differences between populations and species--and...Identifying the causes of diversification is central to evolutionary biology. The ecological theory of adaptive diversi- fication holds that the evolution of phenotypic differences between populations and species--and the formation of new spe- cies-stems from divergent natural selection, often arising from competitive interactions. Although increasing evidence suggests that phenotypic plasticity can facilitate this process, it is not generally appreciated that competitively mediated selection often also provides ideal conditions for phenotypic plasticity to evolve in the first place. Here, we discuss how competition plays at least two key roles in adaptive diversification depending on its pattern. First, heterogenous competition initially generates heterogeneity in resource use that favors adaptive plasticity in the form of "inducible competitors". Second, once such competitively induced plas- ticity evolves, its capacity to rapidly generate phenotypic variation and expose phenotypes to alternate selective regimes allows populations to respond readily to selection favoring diversification, as may occur when competition generates steady diversifying selection that permanently drives the evolutionary divergence of populations that use different resources. Thus, competition plays two important roles in adaptive diversification---one well-known and the other only now emerging--mediated through its effect on the evolution ofphenotypic plasticity展开更多
Kynurenine aminotransferases (KATs) catalyze the transamination of kynurenine (KYN) pathway and endogenous KYNs have been suggested to highly correlate to abnormal brain diseases. HKAT3 is a key member of KAT fami...Kynurenine aminotransferases (KATs) catalyze the transamination of kynurenine (KYN) pathway and endogenous KYNs have been suggested to highly correlate to abnormal brain diseases. HKAT3 is a key member of KAT family, while the binding mechanism of KYN and cofactor with HKAT3 has not been determined yet. In this study, we focus on the structure-function relationship among KYN, cofactor and HKAT3. The binding models of KYN complex and KYN&cofactor complex were ob- tained and were studied by molecular dynamics (MD) simulations. We identified several critical residues and influence of conformational changes in human kynurenine aminotransferase 3 (HKAT3) complexes. The cofactor may contribute largely not only to the catalysis, but also to the binding. In addition, a hypothesis is proposed that a strong hydrophobic interaction between Tyr159 and Lys280 may influence the binding mode and the binding region of the substrate and the cofactor. Our re- suits will be a good starting point for further determination of the biological role.展开更多
Ecological regime shift is the rapid transition from one stable community structure to another, often ecologically infe- rior, stable community. Such regime shifts are especially common in shallow marine communities, ...Ecological regime shift is the rapid transition from one stable community structure to another, often ecologically infe- rior, stable community. Such regime shifts are especially common in shallow marine communities, such as the transition of kelp forests to algal turfs that harbour far lower biodiversity. Stable regimes in communities are a result of balanced interactions be- tween species, and predicting new regimes therefore requires an evaluation of new species interactions, as well as the resilience of the 'stable' position. While computational optimisation techniques can predict new potential regimes, predicting the most likely community state of the various options produced is currently educated guess work. In this study we integrate a stable regime op- timisation approach with a Bayesian network used to infer prior knowledge of the likely stress of climate change (or, in practice, any other disturbance) on each component species of a representative rocky shore community model. Combining the results, by calculating the product of the match between resilient computational predictions and the posterior probabilities of the Bayesian network, gives a refined set of model predictors, and demonstrates the use of the process in determining community changes, as might occur through processes such as climate change. To inform Bayesian priors, we conduct a review of molecular approaches applied to the analysis of the transcriptome of rocky shore organisms, and show how such an approach could be linked to meas- ureable stress variables in the field. Hence species-specific microarrays could be designed as biomarkers of in situ stress, and used to inform predictive modelling approaches such as those described here.展开更多
基金Supported by the National Basic Research Program of China (973 Program) (No.2011CB409804)the National High Technology Research and Development Program of China (863 Program) (No.2007AA09Z434)the Knowledge Innovation Project,CAS (KZCX2-YW-213-3)
文摘Seven surveys were carried out in April, September, October, December 2006 and March, May, August 2007 in the Yellow Sea, China. Variations in the spatial and temporal distribution of Synechococcus, picoeukaryotes and heterotrophic bacteria are quantified using flow cytometry. Synechococcus and heterotrophic bacteria are most abundant from late spring to autumn, while picoeukaryotes concentration is high in spring. Synechococcus and heterotrophic bacteria concentrated high in the northwest part of the Yellow Sea in spring and autumn, while picoeukaryotes distributed evenly over the whole study area except for a small frontal zone in the coastal area on the west (in spring) and central Yellow Sea (in autumn). Under mixing conditions, the vertical distribution of the three picoplankton groups showed a well-mixed pattern. Upon a well-established stratification, the maximum abundance of picoplankton occurred above the mixed layer depth (-30 m). Cell sizes of Synechococcus and picoeukaryotes were estimated by converting forward scatter signals (FSC) from cytometry analysis to cell diameter, showing the results of 0.65-0.82 um for Synechococcus and 0.85-1.08 um for picoeukaryotes. The average integrated carbon biomasses ranged 15.26-312.62 mgC/m2 for Synechococcus, 18.54-51.57 mgC/m2 for picoeukaryotes, and 402.63-818.46 mgC/m2 for heterotrophic bacteria. The distribution of Synechococcus and heterotrophic bacteria was temperature dependent, and picoplankton presence was poor in the Yellow Sea Cold Water Mass.
基金supported by the National Natural Science Foundation of China(Nos.31660128,31360105 and 31160098)the Hainan University(Nos.kypd 1046 and Hdcxcyxm201715)
文摘The spatio-temporal patterns of macrofaunal fouling assemblages were quantitatively investigated in the nearshore waters of the South China Sea.The work was undertaken by deploying seasonal panels at two sites(H-site,L-site) for one year,and the fouling communities on the panels were examined and analyzed.The results indicated that species composition of assemblages was obviously different between the two sites.At both sites the assemblages were characteristic with solitary dominant species throughout the year,with Amphibalanus reticulates dominating at H-site and Hydroides elegans at L-site.Shannon index and biomass of the assemblages varied with depth and season at both sites.At H-site the total biomass in summer and autumn were significantly higher than those in spring and winter,while at L-site the assemblage biomass also differed significantly among the four seasons,and the greatest biomass occurred at the depth of 2.0 m in winter.The abundance of all seasonal samples in non-metric multidimensional scaling was clustered as one group at L-site and three groups at H-site.The environmental factors were more likely to be related to the variation of fouling assemblages.Furthermore,it also suggests that in tropical seas the integrated adaptability would qualify a species for dominating a fouling assemblage despite its short life cycle,rather than the usually assumed only species with long life span.This study reveals the complexity and characteristic dynamics of macrofaunal fouling assemblages in the tropical habitats,and the results would provide valuable knowledge for biodiversity and antifouling research.
基金partly funded by The national ecological environment ten years (2000-2010) change remote sensing survey and evaluation project--Chengdu-Chongqing urban agglomeration ecological environment situation and ten years change investigation and assessment (Project No. STSN-12-05)Sino-Norwegian Biodiversity and Climate Change Project (Grant No. C/IV/S//11/242-02)
文摘Assessing the impact of climate change is important for ecosystem conservation and plant recovery, especially in climate sensitive regions. Various studies suggested that the KSppen classification is an effective method to depict climate change. However, these studies were restricted to large scales or of limited accuracy due to uncertainties in climate model projections. In addition, the impact of elevation on the shift of climate zones, as compared with other factors, is less emphasized. To address these issues we compiled the KSppen Climate Classification (period 1961-2olo) for the study area, Sichuan Province, China. The spatial resolution was selected as x km x x km. Sichuan Province may be characterized by 3 main climate classes and 1o subtypes. The east-west gradient of the climatic regimes in Siehuan is represented by the main climate classes, warm temperate climates (C), snow climates (D) and polar climates (E), at which the most abundant class is C. The most abundant subtype is snow climate with dry winter and cool summer (Dwe). Shifts in K/Sppen climate classes reflect the observed trend of increasing temperature. Finally, the elevation showed an obvious impact on the distribution and the change of climate classes in Siehuan Province. The shift of areas covered by KSppen climate classes increases with elevation.
文摘Correlation of megafauna extinctions and mega-biosphere disturbances with past supernova explosions has been accomplished by considering a time correction for supernova debris traveling at 88.2325 percent of light speed. Supernova W44 is responsible for the Piora Oscillation which appears to be the biblical event of Noah's Flood. The closest supernova explosion, Vela Jr at 652 light-years, gives the beginning of the greatest historical human disaster, The Black Death. When supernova debris energy input occurs in the northern or southern hemisphere, it causes heating (global warming) in the northern or southern hemisphere, respectively. Long term cooling, the Little Ice Age, occurs in the northern hemisphere when the incoming debris of exploding stars impacts only the southern hemisphere for hundreds of years. Termination of the last ice age results due to melting of numerous supernova impacts that correlate time of impact by changing sea level and geothermal energy released for 2,800 years from the exit crater of Dr. J. Kennet's nano-diamond meteor theory and part of the process involves Dr. O'Keefe's tektite theory. Correlation of Dr Frezzotti's ice melt Antarctica data with supernova impact times over the past 800 years establishes the Global Warming model in conjunction with the November 2016 Antarctic sea ice melt.
基金Supported by the National Basic Research Program of China (973 Program) (Nos. 2002CB412405, 2004CB720505)a fund to the Innovative Research Team, the Ministry of Education of China (No.IRT0427)+1 种基金the PhD Program Scholarship Fund of ECNU 2007the Special Research Fund for the National Non-profit Institutes (East China Sea Fisheries Research Institutes) (No. 2008M13)
文摘Spatial distributions and seasonal variations of picoplankton (i.e. Synechococcus spp., Prochlorococcus spp., picoeukaryotes and heterotrophic bacteria) and viruses in the Changjiang estuary have been reported in the past. However, short-term variations (e.g. at a tidal timescale) of these organisms and their regulating factors remain unclear. We determined the time-series of fluctuations of picoplankton and viruses with tide simultaneously in flow cytometry in the Changjiang estuary during a cruise in June 2006, in which a tidal model based rectangle equation was applied. The results indicate that high cell abundances of picoplankton and viruses occurred during flood tide and low cell abundances during ebb tide. The period of the surface cell abundance variations was about 13 h, suggesting the surface cell abundances in the Changjiang estuary were largely regulated by tide. However, cell abundances in middle and bottom waters varied in different periods due to influences of tidal induced physical forces such as resuspension and stratification. Therefore, tidal action is an important factor for the diel variations of picoplankton and viruses in the Changjiang estuary.
文摘Salvia officinalis L. was cultivated in different geographic locations of Albania. Sage plants originated from imported seeds and wild Albanian plants. Around 30 chemical compounds were identified in the essential oils of all cultivated sage plants; the latter were found to be very rich in camphen, fl-thujone, a-pinene, eucaliptol, rich to moderate in β-pinene and camphor, and less rich in a-thujone and limonene. Sharp differences in chemical composition patterns and content of individual chemical compounds were noticed between and within cultivation sites. Cultivated sage was poorer in α-thujone versus wild plants. Cultivated sage, of Albanian wild plants origin, was the richest in α-thujone (18.45%) versus imported seeds sage. β-thujone over-dominated α-thujone in all cultivated sage plants. Volatile characters of cultivated sage were indicative of the species but not of the geographic origin of plant material. Variation in essential oils composition and chemical compounds' content (biosynthetic pathways) in cultivated sage is related more to the genetic background than the environmental factors. If cultivating sage in Albania, then wild local ecotypes would be best to use as α-thujone is maintained at satisfactory levels, local natural base is preserved, unnecessary hybridization with imported seeds sage is prevented, and are more resistant and cost effective.
基金National Natural Science Foundation of China(41771098)Shandong Natural Science Foundation(ZR2014DQ028ZR2015DM004)
文摘To better ascertain leaf, stem and flower traits, and analyze aboveground allocation during the vegetation period, three sampling vegetation transects were settled and reed samples were collected at intervals to determine morphological parameters and dry and wet weights in Jiaozhou Bay wetland. Remote sensing data were also combined to evaluate regional biomass through EVI regression models. Results show that growth dynamics of leaves and stems changed during the vegetation period. Stem length increased rapidly and peaked in September(194.40 ± 23.89 cm), whereas leaf width peaked in July. There was a significantly negative correlation between stem length and stem diameter with a value of-0.785. Stem biomass was higher than that of leaves, and the maximum value of aboveground biomass was 27.17 ± 3.56 g. F/C exhibited a tendency to increase and values ranged from 0.37–0.76. The aboveground biomass of sample plots reached a peak of 2356 ± 457 g/m^2 in September. EVI was 0.05–0.5; EVI and biomass had a better fitting effect using the power-exponent model compared with other models and its function was y = 4219.30 x^0.88(R^2 = 0.7810). R^2 of the other three models ranked as linear function〉 polynomial function 〉exponent function, with the values being 0.7769, 0.7623 and 0.6963, respectively. EVI can be used to estimate vegetation biomass, and effectively solved the problems of the destructive effect to sample plots resulting from traditional harvest methods.
基金Acknowledgements We thank Zhi-Yun Jia for inviting us to submit this paper to a special column on phenotypic plasticity. Three anonymous reviewers provided valuable commentary that encouraged us to improve this work. We also wish to ac- knowledge the long term funding for plasticity research pro- vided by the U.S. National Science Foundation to DP, and the Natural Sciences and Engineering Research Council of Can- ada to BR. Finally, collaboration on this specific project was directly supported through a short-term fellowship to BR by the National Evolutionary Synthesis Center (NESCent funded by NSF #EF-0905606).
文摘Identifying the causes of diversification is central to evolutionary biology. The ecological theory of adaptive diversi- fication holds that the evolution of phenotypic differences between populations and species--and the formation of new spe- cies-stems from divergent natural selection, often arising from competitive interactions. Although increasing evidence suggests that phenotypic plasticity can facilitate this process, it is not generally appreciated that competitively mediated selection often also provides ideal conditions for phenotypic plasticity to evolve in the first place. Here, we discuss how competition plays at least two key roles in adaptive diversification depending on its pattern. First, heterogenous competition initially generates heterogeneity in resource use that favors adaptive plasticity in the form of "inducible competitors". Second, once such competitively induced plas- ticity evolves, its capacity to rapidly generate phenotypic variation and expose phenotypes to alternate selective regimes allows populations to respond readily to selection favoring diversification, as may occur when competition generates steady diversifying selection that permanently drives the evolutionary divergence of populations that use different resources. Thus, competition plays two important roles in adaptive diversification---one well-known and the other only now emerging--mediated through its effect on the evolution ofphenotypic plasticity
基金supported by the National Natural Science Foundation of ChinaSpecialized Research Fund for the Doctoral Program of Higher EducationSpecialized Fund for the Basic Research of Jilin University (20903045, 20573042, 20070183046,200810018)
文摘Kynurenine aminotransferases (KATs) catalyze the transamination of kynurenine (KYN) pathway and endogenous KYNs have been suggested to highly correlate to abnormal brain diseases. HKAT3 is a key member of KAT family, while the binding mechanism of KYN and cofactor with HKAT3 has not been determined yet. In this study, we focus on the structure-function relationship among KYN, cofactor and HKAT3. The binding models of KYN complex and KYN&cofactor complex were ob- tained and were studied by molecular dynamics (MD) simulations. We identified several critical residues and influence of conformational changes in human kynurenine aminotransferase 3 (HKAT3) complexes. The cofactor may contribute largely not only to the catalysis, but also to the binding. In addition, a hypothesis is proposed that a strong hydrophobic interaction between Tyr159 and Lys280 may influence the binding mode and the binding region of the substrate and the cofactor. Our re- suits will be a good starting point for further determination of the biological role.
文摘Ecological regime shift is the rapid transition from one stable community structure to another, often ecologically infe- rior, stable community. Such regime shifts are especially common in shallow marine communities, such as the transition of kelp forests to algal turfs that harbour far lower biodiversity. Stable regimes in communities are a result of balanced interactions be- tween species, and predicting new regimes therefore requires an evaluation of new species interactions, as well as the resilience of the 'stable' position. While computational optimisation techniques can predict new potential regimes, predicting the most likely community state of the various options produced is currently educated guess work. In this study we integrate a stable regime op- timisation approach with a Bayesian network used to infer prior knowledge of the likely stress of climate change (or, in practice, any other disturbance) on each component species of a representative rocky shore community model. Combining the results, by calculating the product of the match between resilient computational predictions and the posterior probabilities of the Bayesian network, gives a refined set of model predictors, and demonstrates the use of the process in determining community changes, as might occur through processes such as climate change. To inform Bayesian priors, we conduct a review of molecular approaches applied to the analysis of the transcriptome of rocky shore organisms, and show how such an approach could be linked to meas- ureable stress variables in the field. Hence species-specific microarrays could be designed as biomarkers of in situ stress, and used to inform predictive modelling approaches such as those described here.