A precise zoom magnification is important for semiconductor industry and biomedical research. A novel measurement method is demonstrated for optical zoom magnification measurement in this paper. The magnification is o...A precise zoom magnification is important for semiconductor industry and biomedical research. A novel measurement method is demonstrated for optical zoom magnification measurement in this paper. The magnification is obtained by pattern correction between barcode image formed by optical zoom and reference image generated by an ideal optical model. Measurement accuracy which is better than 0.06% has been achieved for optical zoom magnification. Compared with traditional concept, the measurement results are only dependent on two line edges. The barcode correlation method can achieve higher accuracy and better robustness by using the information over the whole field of view.展开更多
The study of the adhesion of millions of setae on the toes of geckos has been advanced in recent years with the emergence of new technology and measurement methods. The theory of the mechanism of adhesion by van der W...The study of the adhesion of millions of setae on the toes of geckos has been advanced in recent years with the emergence of new technology and measurement methods. The theory of the mechanism of adhesion by van der Waals forces is now accepted and broadly understood. However, this paper presents limitations of this theory and gives a new hypothesis of the biomechanism of gecko adhesion. The findings are obtained through measurements of the magnitude of the adhesion of setae under three different conditions, to show the close relationship between adhesion and status of the setae. They are reinforced by demonstrating two setal structures, follicle cells and hair, the former making the setae capable of producing bioelectrical charges, which play an important role in attachment and detachment processes. It is shown that the abundant muscular tissues at the base of the setae cells, which are controlled by peripheral nerves, are instrumental in producing the foot movement involved in attachment and detachment. Our study will further uncover the adhesion mechanism of geckos, and provide new ideas for designing and fabricating synthetic setae.展开更多
文摘A precise zoom magnification is important for semiconductor industry and biomedical research. A novel measurement method is demonstrated for optical zoom magnification measurement in this paper. The magnification is obtained by pattern correction between barcode image formed by optical zoom and reference image generated by an ideal optical model. Measurement accuracy which is better than 0.06% has been achieved for optical zoom magnification. Compared with traditional concept, the measurement results are only dependent on two line edges. The barcode correlation method can achieve higher accuracy and better robustness by using the information over the whole field of view.
基金supported by the National Basic Research Program of China (Grant No. 2011CB302106)the National Natural Science Foundation of China (Grant Nos. 30770285, 51175249, 61175105 and 51105201)the Jiangsu Natural Science Foundation (Grant No. BK2009376)
文摘The study of the adhesion of millions of setae on the toes of geckos has been advanced in recent years with the emergence of new technology and measurement methods. The theory of the mechanism of adhesion by van der Waals forces is now accepted and broadly understood. However, this paper presents limitations of this theory and gives a new hypothesis of the biomechanism of gecko adhesion. The findings are obtained through measurements of the magnitude of the adhesion of setae under three different conditions, to show the close relationship between adhesion and status of the setae. They are reinforced by demonstrating two setal structures, follicle cells and hair, the former making the setae capable of producing bioelectrical charges, which play an important role in attachment and detachment processes. It is shown that the abundant muscular tissues at the base of the setae cells, which are controlled by peripheral nerves, are instrumental in producing the foot movement involved in attachment and detachment. Our study will further uncover the adhesion mechanism of geckos, and provide new ideas for designing and fabricating synthetic setae.