The liver is the main organ responsible for the metabolism of drugs and toxic chemicals, and so is the primary target organ for many organic solvents. Work activities with hepatotoxins exposures are numerous and, more...The liver is the main organ responsible for the metabolism of drugs and toxic chemicals, and so is the primary target organ for many organic solvents. Work activities with hepatotoxins exposures are numerous and, moreover, organic solvents are used in various industrial processes. Organic solvents used in different industrial processes may be associated with hepatotoxicity. Several factors contribute to liver toxicity; among these are: species differences, nutritional condition, genetic factors, interaction with medications in use, alcohol abuse and interaction, and age. This review addresses the mechanisms of hepatotoxicity. The main pathogenic mechanisms responsible for functional and organic damage caused by solvents are: inflammation, dysfunction of cytochrome P450, mitochondrial dysfunction and oxidative stress. The health impact of exposure to solvents in the workplace remains an interesting and worrying question for professional health work.展开更多
The most promising strategies in tissue engineering involve the integration of a triad of biomaterials, living cells, and biologically active molecules to engineer synthetic environments that closely mimic the healing...The most promising strategies in tissue engineering involve the integration of a triad of biomaterials, living cells, and biologically active molecules to engineer synthetic environments that closely mimic the healing milieu present in human tissues, and that stimulate tissue repair and regeneration. To be clinically effective, these environments must replicate, as closely as possible, the main characteristics of the native extracellular matrix(ECM) on a cellular and subcellular scale. Photo-fabrication techniques have already been used to generate 3D environments with precise architectures and heterogeneous composition, through a multi-layer procedure involving the selective photocrosslinking reaction of a light-sensitive prepolymer. Cells and therapeutic molecules can be included in the initial hydrogel precursor solution, and processed into 3D constructs. Recently, photofabrication has also been explored to dynamically modulate hydrogel features in real time, providing enhanced control of cell fate and delivery of bioactive compounds. This paper focuses on the use of 3D photo-fabrication techniques to produce advanced constructs for tissue regeneration and drug delivery applications. State-of-the-art photo-fabrication techniques are described, with emphasis on the operating principles and biofabrication strategies to create spatially controlled patterns of cells and bioactive factors. Considering its fast processing, spatiotemporal control, high resolution, and accuracy, photo-fabrication is assuming a critical role in the design of sophisticated 3D constructs. This technology is capable of providing appropriate environments for tissue regeneration, and regulating the spatiotemporal delivery of therapeutics.展开更多
The development of biomedicine has offered new prospects for clinical tissue transplantation. In researching tissue engineering products, the key issue is the construction of micro-circulation network and effective in...The development of biomedicine has offered new prospects for clinical tissue transplantation. In researching tissue engineering products, the key issue is the construction of micro-circulation network and effective induction of angiogenesis is the current continuous explore direction. Revascularization strategy currently focuses on angiogenesis and angiogenesis, but with the advent of microscopic engineering technology, direct construction of artificial micro-circulation pipe has been a new way of thinking.展开更多
A new method to screen antibiotic combinations is demonstrated,which takes advantage of the logic-signal output of genetically engineered drug-resistant E.coli strains expressing different fluorescent proteins.Thirty-...A new method to screen antibiotic combinations is demonstrated,which takes advantage of the logic-signal output of genetically engineered drug-resistant E.coli strains expressing different fluorescent proteins.Thirty-six antibiotic combinations for nine antibiotics were investigated.The operation of different logic gates can reveal the susceptibility,resistance,or synergistic effect of the antibiotic combinations in a rapid(7–8 h versus 24–28 h for typical growth-based assays),simple,quantitative and high-throughput manner.This logic-signal-based output patterns provide the basis for novel and reliable screening of antibiotic combinations and help us to both gain insight into the mechanisms of multi-drug action.展开更多
Fe3 O4 has attracted tremendous interest in vast areas of biomedicine and catalysis as well as environment engineering.However,it is highly desired to fully understand the chemical kinetic process and propose a genera...Fe3 O4 has attracted tremendous interest in vast areas of biomedicine and catalysis as well as environment engineering.However,it is highly desired to fully understand the chemical kinetic process and propose a general,surfactantfree,large-scale synthesis approach for Fe3 O4 spheres.Herein,we developed a facile scalable solvothermal method in the absence of surfactants to produce Fe3 O4 spheres with the yield of 5.1 g,which present tunable sizes from 107 to 450 nm by modulated molar ratio of Fe3+/COO-in the solution.Particularly,it is observed that the reactants undergo a redox process,composed of a precipitation-dissolution equilibrium combined with a coordination reaction(termed as RPC),to the final product based on the LaMer model.It is worth noting that the generation of di-carboxyl group and its coordination with iron cations determine the formation of Fe3 O4 spheres.This work not only offers a strategy to precisely tailor the particle size in scalable synthesis process,but also gives the insight on the role of dihydric alcohol in the formation mechanism of Fe3 O4 spheres in the absence of surfactants.展开更多
文摘The liver is the main organ responsible for the metabolism of drugs and toxic chemicals, and so is the primary target organ for many organic solvents. Work activities with hepatotoxins exposures are numerous and, moreover, organic solvents are used in various industrial processes. Organic solvents used in different industrial processes may be associated with hepatotoxicity. Several factors contribute to liver toxicity; among these are: species differences, nutritional condition, genetic factors, interaction with medications in use, alcohol abuse and interaction, and age. This review addresses the mechanisms of hepatotoxicity. The main pathogenic mechanisms responsible for functional and organic damage caused by solvents are: inflammation, dysfunction of cytochrome P450, mitochondrial dysfunction and oxidative stress. The health impact of exposure to solvents in the workplace remains an interesting and worrying question for professional health work.
基金support of the Portuguese Foundation for Science and Technology (FCT) through the strategic project UID/Multi/04044/2013the FCT for the doctoral grant SFRH/BD/91151/2012
文摘The most promising strategies in tissue engineering involve the integration of a triad of biomaterials, living cells, and biologically active molecules to engineer synthetic environments that closely mimic the healing milieu present in human tissues, and that stimulate tissue repair and regeneration. To be clinically effective, these environments must replicate, as closely as possible, the main characteristics of the native extracellular matrix(ECM) on a cellular and subcellular scale. Photo-fabrication techniques have already been used to generate 3D environments with precise architectures and heterogeneous composition, through a multi-layer procedure involving the selective photocrosslinking reaction of a light-sensitive prepolymer. Cells and therapeutic molecules can be included in the initial hydrogel precursor solution, and processed into 3D constructs. Recently, photofabrication has also been explored to dynamically modulate hydrogel features in real time, providing enhanced control of cell fate and delivery of bioactive compounds. This paper focuses on the use of 3D photo-fabrication techniques to produce advanced constructs for tissue regeneration and drug delivery applications. State-of-the-art photo-fabrication techniques are described, with emphasis on the operating principles and biofabrication strategies to create spatially controlled patterns of cells and bioactive factors. Considering its fast processing, spatiotemporal control, high resolution, and accuracy, photo-fabrication is assuming a critical role in the design of sophisticated 3D constructs. This technology is capable of providing appropriate environments for tissue regeneration, and regulating the spatiotemporal delivery of therapeutics.
文摘The development of biomedicine has offered new prospects for clinical tissue transplantation. In researching tissue engineering products, the key issue is the construction of micro-circulation network and effective induction of angiogenesis is the current continuous explore direction. Revascularization strategy currently focuses on angiogenesis and angiogenesis, but with the advent of microscopic engineering technology, direct construction of artificial micro-circulation pipe has been a new way of thinking.
基金financially supported by the National Natural Science Foundation of China(21203213)the Major Research Plan of China(2013CB932800,2012CB932600)
文摘A new method to screen antibiotic combinations is demonstrated,which takes advantage of the logic-signal output of genetically engineered drug-resistant E.coli strains expressing different fluorescent proteins.Thirty-six antibiotic combinations for nine antibiotics were investigated.The operation of different logic gates can reveal the susceptibility,resistance,or synergistic effect of the antibiotic combinations in a rapid(7–8 h versus 24–28 h for typical growth-based assays),simple,quantitative and high-throughput manner.This logic-signal-based output patterns provide the basis for novel and reliable screening of antibiotic combinations and help us to both gain insight into the mechanisms of multi-drug action.
基金financially supported by the National Natural Science Foundation of China(51631001,51672010 and81421004)the National Key R&D Program of China(2017YFA0206301 and 2016YFA0200102)
文摘Fe3 O4 has attracted tremendous interest in vast areas of biomedicine and catalysis as well as environment engineering.However,it is highly desired to fully understand the chemical kinetic process and propose a general,surfactantfree,large-scale synthesis approach for Fe3 O4 spheres.Herein,we developed a facile scalable solvothermal method in the absence of surfactants to produce Fe3 O4 spheres with the yield of 5.1 g,which present tunable sizes from 107 to 450 nm by modulated molar ratio of Fe3+/COO-in the solution.Particularly,it is observed that the reactants undergo a redox process,composed of a precipitation-dissolution equilibrium combined with a coordination reaction(termed as RPC),to the final product based on the LaMer model.It is worth noting that the generation of di-carboxyl group and its coordination with iron cations determine the formation of Fe3 O4 spheres.This work not only offers a strategy to precisely tailor the particle size in scalable synthesis process,but also gives the insight on the role of dihydric alcohol in the formation mechanism of Fe3 O4 spheres in the absence of surfactants.