A novel bioactive foam emulsion bioreactor for benzene,toluene and xylene(BTX)contaminated air streams treatment has been developed.The gas-liquid interfacial area by biocompatible foam and driving force for mass tran...A novel bioactive foam emulsion bioreactor for benzene,toluene and xylene(BTX)contaminated air streams treatment has been developed.The gas-liquid interfacial area by biocompatible foam and driving force for mass transfer by a water immiscible organic phase were increased in this reactor.The effect of several parameters such as gas residence time,oxygen content,and organic phase concentration on bioreactor performance was studied. Experimental results showed an average elimination capacity(EC)of 220 g·m3·h -1with removal efficiency(RE) of 89.59%for BTX inlet concentration of 1 g·m3at 15 s gas residence time in the bioreactor.The statistical developed model predicted that the maximum elimination capacity of the reactor for BTX could be reached to 423.45 g·m3·h -1.Continues operation of the bioreactor with high EC and RE was demonstrated by optimizing the operational parameters of the bioreactor.Overall the results suggest that the bioreactor developed can be very effective systems to treat BTX vapors.展开更多
This study examines the possibility of using live spirulina to biologically remove aqueous lead of low concentration (below 50 mg/L) from wastewater. The spirulina cells were first immersed for seven days in five wast...This study examines the possibility of using live spirulina to biologically remove aqueous lead of low concentration (below 50 mg/L) from wastewater. The spirulina cells were first immersed for seven days in five wastewater samples containing lead of different concentrations, and the growth rate was determined by light at wavelength of 560 nm. The 72 h-EC50 (72 h medium effective concentration) was estimated to be 11.46 mg/L (lead). Afterwards, the lead adsorption by live spirulina cells was conducted. It was observed that at the initial stage (0–12 min) the adsorption rate was so rapid that 74% of the metal was bio- logically adsorbed. The maximum biosorption capacity of live spirulina was estimated to be 0.62 mg lead per 105 alga cells.展开更多
The growth of reeds was impeded remarkably under a salinity of 15.0±3.4 g CI·L-1 in the first year of this experiment, recovered in the second year and then increased year-by-year afterward. The growth of re...The growth of reeds was impeded remarkably under a salinity of 15.0±3.4 g CI·L-1 in the first year of this experiment, recovered in the second year and then increased year-by-year afterward. The growth of reeds under a salinity of 9.3±1.9 g CI·Ll was much better than those under 15.0 ± 3.4 g CI·L1. The stress effect was significant for shoot extension but not for the quantity of shoots increase. The dense vegetation bed during the vegetation period (June-October) provided a high rate of evapotranspiration and water loss from HFs (horizontal subsurface flow constructed wetlands), which made large contributions to reducing pollutant load. The HFs with die-back reeds in the non-vegetation periods (November-March) provided slight evapotranspiration and water loss and made less of a contribution to reducing pollutants removal compared to HFs with the dense vegetation bed in the vegetation periods. However, the HFs with die-back reeds in the non-vegetation periods had higher removal performance than the HF without reeds. This indicated that the rhizosphere of HFs with reeds might play important roles, such as that the microbes around rhizomes might have a higher amount of pollutant-removing microbe activity than those in the HF without reeds during the non-vegetation period.展开更多
A series of orthogonal array experiments were conducted using carbon source, ammonia nitrogen and total phosphorus (TP) as major influencing factors to investigate the effects of nutrients on biofouling formation an...A series of orthogonal array experiments were conducted using carbon source, ammonia nitrogen and total phosphorus (TP) as major influencing factors to investigate the effects of nutrients on biofouling formation and preponderant bacteria diversity in the recirculatiug cooling water system. Carbon source was demonstrated to be the most significant determinant affecting the biofouling formation. A minimum biofouling outcome was obtained when BOD2, NHa+-N and TP were 25, 10, and 1 mg/L, respectively. Then the preponderant bacteria strains in biofouling mass under two typical culture conditions (negative and favorable) were identified applying both traditional biochemical methods and further molecular biology technology with phylogenetic affiliation analysis, which indicated that Enterobacteriaceae Enterobacter, Micrococcaceae Staphylococcus, Bacillaceae Bacillus, Enterobacteriaceae Proteus, Neisseriaceae Neisseria and Pseudomonadaceae Pseudomonas were dominant under negative condition, while Enterobacteriaceae Klebsiella, Enterobacteriaceae Enterobacter and Microbacterium - under favorable one.展开更多
The typical organic pollutant polycyclic aromatic hydrocarbon(PAH) anthracene was selected as a contaminant to investigate its eff ects on the activities of superoxide dismutase(SOD), catalase(CAT) and glutathione per...The typical organic pollutant polycyclic aromatic hydrocarbon(PAH) anthracene was selected as a contaminant to investigate its eff ects on the activities of superoxide dismutase(SOD), catalase(CAT) and glutathione peroxidase(GSH-Px) in the clam Ruditapes philippinarum. The results show that SOD, CAT and GSH-Px had diff erent induction and inhibition reactions to anthracene stress, and that three diff erent organs in R. philippinarum(visceral mass, muscle tissue and mantle) had diff erent sensitivities to anthracene stress. This study suggest that SOD activities of the visceral mass, CAT activitities of the mantle and the visceral mass, and GSH-Px activity of the muscle tissue could be used as sensitive indicators of anthracene stress in R. philippinarum.展开更多
This review will focus on the more abundant eggshell specific matrix proteins localized in the chicken eggshell (cuticle layer eggshell matrix and shell membranes) that are involved in eggshell mineralization and pr...This review will focus on the more abundant eggshell specific matrix proteins localized in the chicken eggshell (cuticle layer eggshell matrix and shell membranes) that are involved in eggshell mineralization and protecting the egg against microbial contamination, including ovocalyxin-36, ovocleidin-17, ovocalyxin-32 and ovocalyxin-25. Further understanding of these proteins and their mechanisms in egg defence could lead to the development of novel neutraceuticals for human health, additives to animal feed for healthy flocks, or enhanced eggs for human consumption.展开更多
A combined process of catalytic ozonation in the presence of a novel heterogeneous catalyst and biological activated carbon was investigated for the removal of priority control organic pollutants, the reduction of gen...A combined process of catalytic ozonation in the presence of a novel heterogeneous catalyst and biological activated carbon was investigated for the removal of priority control organic pollutants, the reduction of genotoxicity, and the improvement of biodegradable dissolved organic carbon (BDOC). Results confirm that the catalytic ozonation has higher effectiveness for the removal of refractory harmful organic pollutants, the reduction of genotoxicity and the increase of bio-degradability of organics than ozonation alone, which results in lower pollution load for subsequent biological activated carbon process, and then leads to less organic pollutants penetrating biological activated carbon. The novel catalytic ozonation with this combined process exhibits excellent performance to guarantee the safety of drinking water.展开更多
In order to control heavy metal pollution effectively, this paper reviews heavy metal source and transport characteristics in heavy metal circulation in bio- sphere, including geochemical cycle and biological cycle of...In order to control heavy metal pollution effectively, this paper reviews heavy metal source and transport characteristics in heavy metal circulation in bio- sphere, including geochemical cycle and biological cycle of heavy metals. The inter- body of geochemical cycle of heavy metals includes soil, gas as well as water body, and the interbody of biological cycle of heavy metals includes environment, plant, microorganisms and animals. As to macro-cycle, transportation character in each interbody is different. Heavy metal circulation in different interbody interacts with each other and is in dynamic balance. Heavy metals in soil include two parts, i.e. active and inert forms, which are in dynamic equilibrium. This equilibrium may be affected by different physicochemical factors. Heavy metal content at different soil depth reflects historical accumulation level of heavy metal. In contrast to agri- cultural eco-system itself, industrial and urban activities are of great menace. Fluvial transport and atmospheric input are significant pathways of heavy metal circulation. Sludge plays an accumulative role of heavy metals, and can release its heavy met- als to water body causing secondary pollution. Balance of heavy metal immobiliza- tion and release is interrupted by physicochemical characters and microbial activity. Temperature can influence atmospheric heavy metal content, and volatile heavy meal precipitation is an indLspensable source in soil and water body. In regard to micro-cycle, plants is the main part in heavy metal cycle, microorganisms play roles in accelerator and animals in recipient. Specific transportation and assigned location of heavy metal in plants are adopted to keep internal heavy metal equilibrium.展开更多
Due to easy volatilization of volatile organic compounds from water,it is difficult to monitor their aerobic biodegradation in the traditional single water system.Whether a two-liquid-phase system(TLPS) could overcome...Due to easy volatilization of volatile organic compounds from water,it is difficult to monitor their aerobic biodegradation in the traditional single water system.Whether a two-liquid-phase system(TLPS) could overcome this obstacle and enhance the degradation of volatile contaminants? In this study,a TLPS composed of silicone oil and water was employed to investigate the biodegradation of volatile compounds,trichlorobenzenes(TCBs),by the adapted microorganisms in an activated soil.The degradation and volatilization of TCBs in TLPS and in a single water system were compared.The results showed that due to volatilization losses of TCBs,the mass balance of TCBs in a single water system was very low.In contrast,using TLPS could effectively inhibit the volatilization losses of TCBs and achieved a very good mass balance during the biodegradation process.Meanwhile,the TLPS could increase microbial activity and microbial growth during the degradation process.With TLPS,the TCB degradation was in descending order of 1,2,4-TCB> 1,2,3-TCB>> 1,3,5-TCB,which was related to the exposed concentration of the contaminants in soil.This study showed that TLPS could be employed as an effective tool to evaluate the biodegradation of volatile hydrophobic organic compounds,which could not be achieved with the traditional single water system.展开更多
文摘A novel bioactive foam emulsion bioreactor for benzene,toluene and xylene(BTX)contaminated air streams treatment has been developed.The gas-liquid interfacial area by biocompatible foam and driving force for mass transfer by a water immiscible organic phase were increased in this reactor.The effect of several parameters such as gas residence time,oxygen content,and organic phase concentration on bioreactor performance was studied. Experimental results showed an average elimination capacity(EC)of 220 g·m3·h -1with removal efficiency(RE) of 89.59%for BTX inlet concentration of 1 g·m3at 15 s gas residence time in the bioreactor.The statistical developed model predicted that the maximum elimination capacity of the reactor for BTX could be reached to 423.45 g·m3·h -1.Continues operation of the bioreactor with high EC and RE was demonstrated by optimizing the operational parameters of the bioreactor.Overall the results suggest that the bioreactor developed can be very effective systems to treat BTX vapors.
文摘This study examines the possibility of using live spirulina to biologically remove aqueous lead of low concentration (below 50 mg/L) from wastewater. The spirulina cells were first immersed for seven days in five wastewater samples containing lead of different concentrations, and the growth rate was determined by light at wavelength of 560 nm. The 72 h-EC50 (72 h medium effective concentration) was estimated to be 11.46 mg/L (lead). Afterwards, the lead adsorption by live spirulina cells was conducted. It was observed that at the initial stage (0–12 min) the adsorption rate was so rapid that 74% of the metal was bio- logically adsorbed. The maximum biosorption capacity of live spirulina was estimated to be 0.62 mg lead per 105 alga cells.
文摘The growth of reeds was impeded remarkably under a salinity of 15.0±3.4 g CI·L-1 in the first year of this experiment, recovered in the second year and then increased year-by-year afterward. The growth of reeds under a salinity of 9.3±1.9 g CI·Ll was much better than those under 15.0 ± 3.4 g CI·L1. The stress effect was significant for shoot extension but not for the quantity of shoots increase. The dense vegetation bed during the vegetation period (June-October) provided a high rate of evapotranspiration and water loss from HFs (horizontal subsurface flow constructed wetlands), which made large contributions to reducing pollutant load. The HFs with die-back reeds in the non-vegetation periods (November-March) provided slight evapotranspiration and water loss and made less of a contribution to reducing pollutants removal compared to HFs with the dense vegetation bed in the vegetation periods. However, the HFs with die-back reeds in the non-vegetation periods had higher removal performance than the HF without reeds. This indicated that the rhizosphere of HFs with reeds might play important roles, such as that the microbes around rhizomes might have a higher amount of pollutant-removing microbe activity than those in the HF without reeds during the non-vegetation period.
基金supported by the National Natural Science Foundation of China (No.20707040)the State Key Laboratory of Pollution Control and Resource Reuse Foundation(No. PCRRF08002).
文摘A series of orthogonal array experiments were conducted using carbon source, ammonia nitrogen and total phosphorus (TP) as major influencing factors to investigate the effects of nutrients on biofouling formation and preponderant bacteria diversity in the recirculatiug cooling water system. Carbon source was demonstrated to be the most significant determinant affecting the biofouling formation. A minimum biofouling outcome was obtained when BOD2, NHa+-N and TP were 25, 10, and 1 mg/L, respectively. Then the preponderant bacteria strains in biofouling mass under two typical culture conditions (negative and favorable) were identified applying both traditional biochemical methods and further molecular biology technology with phylogenetic affiliation analysis, which indicated that Enterobacteriaceae Enterobacter, Micrococcaceae Staphylococcus, Bacillaceae Bacillus, Enterobacteriaceae Proteus, Neisseriaceae Neisseria and Pseudomonadaceae Pseudomonas were dominant under negative condition, while Enterobacteriaceae Klebsiella, Enterobacteriaceae Enterobacter and Microbacterium - under favorable one.
基金Supported by the Joint Funds of the National Natural Science Foundation of China and the Marine Science Research Center of People’s Government of Shandong Province(No.U1406403)
文摘The typical organic pollutant polycyclic aromatic hydrocarbon(PAH) anthracene was selected as a contaminant to investigate its eff ects on the activities of superoxide dismutase(SOD), catalase(CAT) and glutathione peroxidase(GSH-Px) in the clam Ruditapes philippinarum. The results show that SOD, CAT and GSH-Px had diff erent induction and inhibition reactions to anthracene stress, and that three diff erent organs in R. philippinarum(visceral mass, muscle tissue and mantle) had diff erent sensitivities to anthracene stress. This study suggest that SOD activities of the visceral mass, CAT activitities of the mantle and the visceral mass, and GSH-Px activity of the muscle tissue could be used as sensitive indicators of anthracene stress in R. philippinarum.
文摘This review will focus on the more abundant eggshell specific matrix proteins localized in the chicken eggshell (cuticle layer eggshell matrix and shell membranes) that are involved in eggshell mineralization and protecting the egg against microbial contamination, including ovocalyxin-36, ovocleidin-17, ovocalyxin-32 and ovocalyxin-25. Further understanding of these proteins and their mechanisms in egg defence could lead to the development of novel neutraceuticals for human health, additives to animal feed for healthy flocks, or enhanced eggs for human consumption.
基金Sponsored by the National High Technology Research and Development Program (863) of China(Grant No. 2006AA06Z306)the National Natural Science Foundation of China(Grant No.50578051)
文摘A combined process of catalytic ozonation in the presence of a novel heterogeneous catalyst and biological activated carbon was investigated for the removal of priority control organic pollutants, the reduction of genotoxicity, and the improvement of biodegradable dissolved organic carbon (BDOC). Results confirm that the catalytic ozonation has higher effectiveness for the removal of refractory harmful organic pollutants, the reduction of genotoxicity and the increase of bio-degradability of organics than ozonation alone, which results in lower pollution load for subsequent biological activated carbon process, and then leads to less organic pollutants penetrating biological activated carbon. The novel catalytic ozonation with this combined process exhibits excellent performance to guarantee the safety of drinking water.
文摘In order to control heavy metal pollution effectively, this paper reviews heavy metal source and transport characteristics in heavy metal circulation in bio- sphere, including geochemical cycle and biological cycle of heavy metals. The inter- body of geochemical cycle of heavy metals includes soil, gas as well as water body, and the interbody of biological cycle of heavy metals includes environment, plant, microorganisms and animals. As to macro-cycle, transportation character in each interbody is different. Heavy metal circulation in different interbody interacts with each other and is in dynamic balance. Heavy metals in soil include two parts, i.e. active and inert forms, which are in dynamic equilibrium. This equilibrium may be affected by different physicochemical factors. Heavy metal content at different soil depth reflects historical accumulation level of heavy metal. In contrast to agri- cultural eco-system itself, industrial and urban activities are of great menace. Fluvial transport and atmospheric input are significant pathways of heavy metal circulation. Sludge plays an accumulative role of heavy metals, and can release its heavy met- als to water body causing secondary pollution. Balance of heavy metal immobiliza- tion and release is interrupted by physicochemical characters and microbial activity. Temperature can influence atmospheric heavy metal content, and volatile heavy meal precipitation is an indLspensable source in soil and water body. In regard to micro-cycle, plants is the main part in heavy metal cycle, microorganisms play roles in accelerator and animals in recipient. Specific transportation and assigned location of heavy metal in plants are adopted to keep internal heavy metal equilibrium.
基金supported by the Specific Fund for Agro-Scientific Research in the Public Interest of China(No.201203045)the National Basic Research Program(973 Program)of China(No.2014CB441105)+1 种基金the National Natural Science Foundation of China (Nos.41301240 and 21277148)the Jiangsu Provincial Natural Science Foundation of China(No.BK20131049)
文摘Due to easy volatilization of volatile organic compounds from water,it is difficult to monitor their aerobic biodegradation in the traditional single water system.Whether a two-liquid-phase system(TLPS) could overcome this obstacle and enhance the degradation of volatile contaminants? In this study,a TLPS composed of silicone oil and water was employed to investigate the biodegradation of volatile compounds,trichlorobenzenes(TCBs),by the adapted microorganisms in an activated soil.The degradation and volatilization of TCBs in TLPS and in a single water system were compared.The results showed that due to volatilization losses of TCBs,the mass balance of TCBs in a single water system was very low.In contrast,using TLPS could effectively inhibit the volatilization losses of TCBs and achieved a very good mass balance during the biodegradation process.Meanwhile,the TLPS could increase microbial activity and microbial growth during the degradation process.With TLPS,the TCB degradation was in descending order of 1,2,4-TCB> 1,2,3-TCB>> 1,3,5-TCB,which was related to the exposed concentration of the contaminants in soil.This study showed that TLPS could be employed as an effective tool to evaluate the biodegradation of volatile hydrophobic organic compounds,which could not be achieved with the traditional single water system.