Schrodinger's thought experiment to prepare a cat in a superposition of both alive and dead states reveals profound consequences of quantum mechanics and has attracted enormous interests. Here we propose a straight- ...Schrodinger's thought experiment to prepare a cat in a superposition of both alive and dead states reveals profound consequences of quantum mechanics and has attracted enormous interests. Here we propose a straight- forward method to create quantum superposition states of a living microorganism by putting a small cryopreserved bacterium on top of an electromechanical oscillator. Our proposal is based on recent developments that the center- of-mass oscillation of a 15-pro-diameter aluminum mem- brane has been cooled to its quantum ground state (Teufel et al. in Nature 475:359, 2011), and entangled with a microwave field (Palomaki et al. in Science 342:710, 2013). A microorganism with a mass much smaller than the mass of the electromechanical membrane will not signifi- cantly affect the quality factor of the membrane and can be cooled to the quantum ground state together with themembrane. Quantum superposition and teleportation of its center-of-mass motion state can be realized with the help of superconducting microwave circuits. More importantly, the internal states of a microorganism, such as the electron spin of a glycine radical, can be entangled with its center-of- mass motion and teleported to a remote microorganism. Our proposal can be realized with state-of-the-art tech- nologies. The proposed setup is a quantum-limited mag- netic resonance force microscope. Since internal states of an organism contain information, our proposal also pro- vides a scheme for teleporting information or memories between two remote organisms.展开更多
The 2017 Nobel prize in physiology or medicine was awarded to the discoveries of genes and molecular mechanisms of the circadian rhythm,which is any biological process that oscillates with a period of about 24 h.Three...The 2017 Nobel prize in physiology or medicine was awarded to the discoveries of genes and molecular mechanisms of the circadian rhythm,which is any biological process that oscillates with a period of about 24 h.Three scientists from the United States,Jeffrey C.Hall,Michael Rosbash,and Michael W.Young,shared the award.This work is of great theoretical value in understanding the nature of life and the interactions of life with its environments.展开更多
This paper presents an alternative representation of a system of differential equations qualitatively showing the behavior of the biological rhythm of a crayfish during their transition from juvenile to adult stages. ...This paper presents an alternative representation of a system of differential equations qualitatively showing the behavior of the biological rhythm of a crayfish during their transition from juvenile to adult stages. The model focuses on the interaction of four cellular oscillators coupled by diffusion of a hormone, a parameter μ is used to simu- late the quality of communication among the oscillators, in biological terms, it mea- sures developmental maturity of the crayfish. Since some quorum-sensing mechanism is assumed to be responsible for the synchronization of the biological oscillators, it is nat- ural to investigate the possibility that the underlying diffusion process is not standard, i.e. it may be a so-called anomalous diffusion. In this case, it is well understood that diffusion equations with fractional derivatives describe these processes in a more realis- tic way. The alternative formulation of these equations contains fractional operators of Liouville-Caputo and Caputo-Fabrizio type. The numerical simulations of the equations reflect synchronization of ultradian rhythms leading to a circadian rhythm. The classical behavior is recovered when the order of the fractional derivative is V = 1. We discuss possible biological implications.展开更多
基金the support from Purdue University and helpful discussions with G.Csathy,F.Robicheaux, C.Greene,and V.ShalaevZQY is funded by the National Basic Research Program of China (2011CBA00300 and 2011CBA00302)the National Natural Science Foundation of China (11105136, 11474177 and 61435007)
文摘Schrodinger's thought experiment to prepare a cat in a superposition of both alive and dead states reveals profound consequences of quantum mechanics and has attracted enormous interests. Here we propose a straight- forward method to create quantum superposition states of a living microorganism by putting a small cryopreserved bacterium on top of an electromechanical oscillator. Our proposal is based on recent developments that the center- of-mass oscillation of a 15-pro-diameter aluminum mem- brane has been cooled to its quantum ground state (Teufel et al. in Nature 475:359, 2011), and entangled with a microwave field (Palomaki et al. in Science 342:710, 2013). A microorganism with a mass much smaller than the mass of the electromechanical membrane will not signifi- cantly affect the quality factor of the membrane and can be cooled to the quantum ground state together with themembrane. Quantum superposition and teleportation of its center-of-mass motion state can be realized with the help of superconducting microwave circuits. More importantly, the internal states of a microorganism, such as the electron spin of a glycine radical, can be entangled with its center-of- mass motion and teleported to a remote microorganism. Our proposal can be realized with state-of-the-art tech- nologies. The proposed setup is a quantum-limited mag- netic resonance force microscope. Since internal states of an organism contain information, our proposal also pro- vides a scheme for teleporting information or memories between two remote organisms.
文摘The 2017 Nobel prize in physiology or medicine was awarded to the discoveries of genes and molecular mechanisms of the circadian rhythm,which is any biological process that oscillates with a period of about 24 h.Three scientists from the United States,Jeffrey C.Hall,Michael Rosbash,and Michael W.Young,shared the award.This work is of great theoretical value in understanding the nature of life and the interactions of life with its environments.
文摘This paper presents an alternative representation of a system of differential equations qualitatively showing the behavior of the biological rhythm of a crayfish during their transition from juvenile to adult stages. The model focuses on the interaction of four cellular oscillators coupled by diffusion of a hormone, a parameter μ is used to simu- late the quality of communication among the oscillators, in biological terms, it mea- sures developmental maturity of the crayfish. Since some quorum-sensing mechanism is assumed to be responsible for the synchronization of the biological oscillators, it is nat- ural to investigate the possibility that the underlying diffusion process is not standard, i.e. it may be a so-called anomalous diffusion. In this case, it is well understood that diffusion equations with fractional derivatives describe these processes in a more realis- tic way. The alternative formulation of these equations contains fractional operators of Liouville-Caputo and Caputo-Fabrizio type. The numerical simulations of the equations reflect synchronization of ultradian rhythms leading to a circadian rhythm. The classical behavior is recovered when the order of the fractional derivative is V = 1. We discuss possible biological implications.