[Objective] In this study,the secretion of organic acids from plant roots under soil nutrient and water stress and the effects of organic acids on ecological adaptability of plants were investigated,which provided the...[Objective] In this study,the secretion of organic acids from plant roots under soil nutrient and water stress and the effects of organic acids on ecological adaptability of plants were investigated,which provided theoretical basis for improving the adaptability of plants to a variety of stress conditions.The results showed that,under nutrient and water stress,the content of organic acids secreted from plant roots increased significantly as a common active adaptive response.Organic acids could improve the activities of a variety of antioxidant enzymes,contents of osmotic regulatory substances,contents of chlorophyll and photosynthesis levels,promote nutrient absorption and transportation in plants,and ultimately contribute to plant growth and biomass accumulation,reduce the toxicity of stress conditions to plants and improve the stress resistance and adaptability of plants.展开更多
A hydroponic experiment was conducted to study the effect of partial replacement of NO-3-N by NH4+-N on the seedling growth and organic acid content of tomato (Lycopersicon esculentum Mill.). A completely randomized d...A hydroponic experiment was conducted to study the effect of partial replacement of NO-3-N by NH4+-N on the seedling growth and organic acid content of tomato (Lycopersicon esculentum Mill.). A completely randomized design was established with three replications and five treatments, i.e., NO-3-N/NH4+-N of 100/0, 75/25, 50/50, 25/75 and 0/100. Results showed that 25% replacement of NO3--N by NH4+-N significantly (P = 0.05) improved fresh and dry weight, revealing that a proper percentage of NH4+-N was important for tomato nitrogen nutrition. This could increase the plant growth even though tomato was a crop that preferred nitrate nutrition. Also an increase in the proportion of NH4+-N in the nutrient solution led to a significant decrease (P = 0.05) in malate, citrate and fumarate. However, the 25% NH4+-N plus 75% NO3--N treatment had no significant effect (P = 0.05) on the 2-ketoglutarate, succinate or oxalic acid content, showing that only some organic acids in tomato plants were affected. Only pyruvate increased significantly (P = 0.05), and it only increased for 25% and 50% replacement of NO3--N by NH4+-N. Metabolism of these organic acids, especially malate, citrate and fumarate, should be further studied at the molecular level in vegetables applied with different nitrogen forms.展开更多
Incubation experiments were conducted to investigate the dynamics of low- molecufar-weight aliphatic acids in two andosols with and without plant materials. Results showed that amount of low- molecular-weight aliphati...Incubation experiments were conducted to investigate the dynamics of low- molecufar-weight aliphatic acids in two andosols with and without plant materials. Results showed that amount of low- molecular-weight aliphatic acids in soils alone varied considerably with water regime under which the soil was incubated,duration of incubation and soil organic matter content, ranging from 257-860 pmol kg-1 soil I of which 19%~33% was in free state. Incorporation of plant materials increased greatly both the amount and number of members of low- molecular- weight aliphaticacidst and also the proporticn of low-molec "far-weight aliphatic acids occurred in free state. Generally, among these aliphatic acids detected, acetic, propionic, glyoxalic and formic acids were predominant.展开更多
We sampled the sediments of the East China Sea during 2005 and 2006, and analysed the contents of the biogenic matters: biogenic silica, organic carbon, and organic nitrogen. From the surface distribution we found the...We sampled the sediments of the East China Sea during 2005 and 2006, and analysed the contents of the biogenic matters: biogenic silica, organic carbon, and organic nitrogen. From the surface distribution we found the contents of these substances to be in the ranges of 0.72%-1.64%, 0.043%-0.82%, and 0.006%-0.11%, respectively. Their distributions were similar to each other, being high inside the Hangzhou Bay and low outside the bay. The vertical variations of the contents were also similar. In order to discuss the relation between them we analysed the variations of content with depth. They increased in the first 7 cm and then decreased with depth. The peaks were found at depths between 20 to 25 cm. The distribution of carbonate showed an opposite trend to that of biogenic matters. The content of total carbon was relatively stable with respect to depth, and the ratio of high organic carbon to carbonate showed a low burial efficiency of carbonate, which means that the main burial of carbon is organic carbon. In order to discuss the source of organic matters, the ratio of organic carbon to organic nitrogen was calculated, which was 8.01 to 9.65, indicating that the organic matter in the sediments was derived mainly from phytoplankton in the seawater.展开更多
[Objective] This study aimed to investigate the improving effect of organic fertilizer on acidified soil as well as their effects on fruit quality and quantity in Yantai orchard.[Method] Plot experiment was conducted ...[Objective] This study aimed to investigate the improving effect of organic fertilizer on acidified soil as well as their effects on fruit quality and quantity in Yantai orchard.[Method] Plot experiment was conducted to investigate the effects of organic fertilizer on fruit yield and quality of Red Fuji and chemical properties of acidified soil.[Result] The apple yield in acidified soil applied with organic fertilizer all increased.Under the application of biological organic fertilizer,the apple yield was higher,and it was 8.92% higher than that in the control group.Under the mixed application of chemical fertilizer and biological organic fertilizer,the growth and development of apple trees were improved,and the total soluble solid(TSS) content,vitamin C(Vc) content and TSS-acid ratio in mature apples all increased.The application of organic fertilizer significantly reduced soil acidity.Compared with those in the control group,the soil p H value,organic matter content and alkali-hydrolyzable nitrogen content under the application of biological organic fertilizer were increased by 8.33%,15.10% and 30.80%,respectively.[Conclusion] The application of biological organic fertilizer could improve the yield of apple in acidified soil.展开更多
This study identifies the potential role in heat-stress mitigation of phytohormones and other secondary metabolites produced by the endophytic fungus Paecilomyces formosus LWL1 in japonica rice cultivar Dongjin. The j...This study identifies the potential role in heat-stress mitigation of phytohormones and other secondary metabolites produced by the endophytic fungus Paecilomyces formosus LWL1 in japonica rice cultivar Dongjin. The japonica rice was grown in controlled chamber conditions with and without P. formosus LWL1 under no stress (NS) and prolonged heat stress (HS) conditions. Endophytic association under NS and HS conditions significantly improved plant growth attributes, such as plant height, fresh weight, dry weight, and chlorophyll content. Furthermore, P. for- mosus LWL1 protected the rice plants from HS compared with controls, indicated by the lower endogenous level of stress-signaling compounds such as abscisic acid (25.71%) and jasmonic acid (34.57%) and the increase in total protein content (18.76%-33.22%). Such fungal endophytes may be helpful for sustainable crop production under high environmental temperatures.展开更多
Traditional exhaustive extraction methods often overestimate the risk of polycyclic aromatic hydrocarbon(PAH) bioaccessibility to biota. Therefore, reliable assessment methods need to be established. In this study, a ...Traditional exhaustive extraction methods often overestimate the risk of polycyclic aromatic hydrocarbon(PAH) bioaccessibility to biota. Therefore, reliable assessment methods need to be established. In this study, a composite extraction with hydroxypropyl-β-cyclodextrin(HPCD) and three low-molecular-weight organic acids, oxalic acid(OA), malic acid(MA), and citric acid(CA), was used to predict the PAH bioaccessibility to earthworms, subjecting to two soils(red soil and yellow soil) spiked with selected PAHs,phenanthrene, pyrene, chrysene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene. For both soils,concentrations of PAHs by composite extraction using HPCD-OA(R^2= 0.89–0.92, slope = 1.89–2.03; n = 35), HPCD-MA(R^2=0.92–0.96, slope = 1.43–1.67; n = 35), and HPCD-CA(R^2= 0.92–0.96, slope = 1.26–1.56; n = 35) were significantly correlated with PAH accumulation in the Eisenia fetida earthworms. Moreover, the HPCD-CA-and HPCD-MA-extracted PAH concentrations were closer to the earthworm-accumulated PAH concentration than the extraction using just HPCD. The results indicated that the composite extraction could improve the prediction of PAH bioaccessibility, and therefore can serve as a reliable chemical method to predict PAH bioaccessibility to earthworms in contaminated soils.展开更多
基金Supported by National Natural Science Foundation of China(31370613)Major State Basic Research Development Program of China(973 Program)(2011CB403202)Fundamental Research Funds for the Central Universities(DL12CA01)~~
文摘[Objective] In this study,the secretion of organic acids from plant roots under soil nutrient and water stress and the effects of organic acids on ecological adaptability of plants were investigated,which provided theoretical basis for improving the adaptability of plants to a variety of stress conditions.The results showed that,under nutrient and water stress,the content of organic acids secreted from plant roots increased significantly as a common active adaptive response.Organic acids could improve the activities of a variety of antioxidant enzymes,contents of osmotic regulatory substances,contents of chlorophyll and photosynthesis levels,promote nutrient absorption and transportation in plants,and ultimately contribute to plant growth and biomass accumulation,reduce the toxicity of stress conditions to plants and improve the stress resistance and adaptability of plants.
基金Project supported by the National Natural Science Foundation of China (No. 30270790) and National Post-doctoral Foundation of China (No. 2003033494).
文摘A hydroponic experiment was conducted to study the effect of partial replacement of NO-3-N by NH4+-N on the seedling growth and organic acid content of tomato (Lycopersicon esculentum Mill.). A completely randomized design was established with three replications and five treatments, i.e., NO-3-N/NH4+-N of 100/0, 75/25, 50/50, 25/75 and 0/100. Results showed that 25% replacement of NO3--N by NH4+-N significantly (P = 0.05) improved fresh and dry weight, revealing that a proper percentage of NH4+-N was important for tomato nitrogen nutrition. This could increase the plant growth even though tomato was a crop that preferred nitrate nutrition. Also an increase in the proportion of NH4+-N in the nutrient solution led to a significant decrease (P = 0.05) in malate, citrate and fumarate. However, the 25% NH4+-N plus 75% NO3--N treatment had no significant effect (P = 0.05) on the 2-ketoglutarate, succinate or oxalic acid content, showing that only some organic acids in tomato plants were affected. Only pyruvate increased significantly (P = 0.05), and it only increased for 25% and 50% replacement of NO3--N by NH4+-N. Metabolism of these organic acids, especially malate, citrate and fumarate, should be further studied at the molecular level in vegetables applied with different nitrogen forms.
文摘Incubation experiments were conducted to investigate the dynamics of low- molecufar-weight aliphatic acids in two andosols with and without plant materials. Results showed that amount of low- molecular-weight aliphatic acids in soils alone varied considerably with water regime under which the soil was incubated,duration of incubation and soil organic matter content, ranging from 257-860 pmol kg-1 soil I of which 19%~33% was in free state. Incorporation of plant materials increased greatly both the amount and number of members of low- molecular- weight aliphaticacidst and also the proporticn of low-molec "far-weight aliphatic acids occurred in free state. Generally, among these aliphatic acids detected, acetic, propionic, glyoxalic and formic acids were predominant.
基金supported by the National Key Basic Research Program (973) (Grant No. 2010CB428701)
文摘We sampled the sediments of the East China Sea during 2005 and 2006, and analysed the contents of the biogenic matters: biogenic silica, organic carbon, and organic nitrogen. From the surface distribution we found the contents of these substances to be in the ranges of 0.72%-1.64%, 0.043%-0.82%, and 0.006%-0.11%, respectively. Their distributions were similar to each other, being high inside the Hangzhou Bay and low outside the bay. The vertical variations of the contents were also similar. In order to discuss the relation between them we analysed the variations of content with depth. They increased in the first 7 cm and then decreased with depth. The peaks were found at depths between 20 to 25 cm. The distribution of carbonate showed an opposite trend to that of biogenic matters. The content of total carbon was relatively stable with respect to depth, and the ratio of high organic carbon to carbonate showed a low burial efficiency of carbonate, which means that the main burial of carbon is organic carbon. In order to discuss the source of organic matters, the ratio of organic carbon to organic nitrogen was calculated, which was 8.01 to 9.65, indicating that the organic matter in the sediments was derived mainly from phytoplankton in the seawater.
基金Supported by Scientific and Technological Development Plan of Yantai City(2015YD014)
文摘[Objective] This study aimed to investigate the improving effect of organic fertilizer on acidified soil as well as their effects on fruit quality and quantity in Yantai orchard.[Method] Plot experiment was conducted to investigate the effects of organic fertilizer on fruit yield and quality of Red Fuji and chemical properties of acidified soil.[Result] The apple yield in acidified soil applied with organic fertilizer all increased.Under the application of biological organic fertilizer,the apple yield was higher,and it was 8.92% higher than that in the control group.Under the mixed application of chemical fertilizer and biological organic fertilizer,the growth and development of apple trees were improved,and the total soluble solid(TSS) content,vitamin C(Vc) content and TSS-acid ratio in mature apples all increased.The application of organic fertilizer significantly reduced soil acidity.Compared with those in the control group,the soil p H value,organic matter content and alkali-hydrolyzable nitrogen content under the application of biological organic fertilizer were increased by 8.33%,15.10% and 30.80%,respectively.[Conclusion] The application of biological organic fertilizer could improve the yield of apple in acidified soil.
基金supported by the National Research Foundation of Korea(NRF)Ministry of Science,ICT and Future-Planning through Basic-Science Research Program(No.2014R1A1A2A10058022)
文摘This study identifies the potential role in heat-stress mitigation of phytohormones and other secondary metabolites produced by the endophytic fungus Paecilomyces formosus LWL1 in japonica rice cultivar Dongjin. The japonica rice was grown in controlled chamber conditions with and without P. formosus LWL1 under no stress (NS) and prolonged heat stress (HS) conditions. Endophytic association under NS and HS conditions significantly improved plant growth attributes, such as plant height, fresh weight, dry weight, and chlorophyll content. Furthermore, P. for- mosus LWL1 protected the rice plants from HS compared with controls, indicated by the lower endogenous level of stress-signaling compounds such as abscisic acid (25.71%) and jasmonic acid (34.57%) and the increase in total protein content (18.76%-33.22%). Such fungal endophytes may be helpful for sustainable crop production under high environmental temperatures.
基金supported by the National Key Basic Research Development Program (973) (No. 2014CB441105)the National Natural Science Foundation of China (Nos. 41271327, 41271464 and 21377138)
文摘Traditional exhaustive extraction methods often overestimate the risk of polycyclic aromatic hydrocarbon(PAH) bioaccessibility to biota. Therefore, reliable assessment methods need to be established. In this study, a composite extraction with hydroxypropyl-β-cyclodextrin(HPCD) and three low-molecular-weight organic acids, oxalic acid(OA), malic acid(MA), and citric acid(CA), was used to predict the PAH bioaccessibility to earthworms, subjecting to two soils(red soil and yellow soil) spiked with selected PAHs,phenanthrene, pyrene, chrysene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene. For both soils,concentrations of PAHs by composite extraction using HPCD-OA(R^2= 0.89–0.92, slope = 1.89–2.03; n = 35), HPCD-MA(R^2=0.92–0.96, slope = 1.43–1.67; n = 35), and HPCD-CA(R^2= 0.92–0.96, slope = 1.26–1.56; n = 35) were significantly correlated with PAH accumulation in the Eisenia fetida earthworms. Moreover, the HPCD-CA-and HPCD-MA-extracted PAH concentrations were closer to the earthworm-accumulated PAH concentration than the extraction using just HPCD. The results indicated that the composite extraction could improve the prediction of PAH bioaccessibility, and therefore can serve as a reliable chemical method to predict PAH bioaccessibility to earthworms in contaminated soils.