The emergence of nanoparticles(NPs)has attracted tremendous interest of the scientific community for decades due to their unique properties and potential applications in diverse areas,including drug delivery and thera...The emergence of nanoparticles(NPs)has attracted tremendous interest of the scientific community for decades due to their unique properties and potential applications in diverse areas,including drug delivery and therapy.Many novel NPs have been synthesized and used to reduce drug toxicity,improve bio-availability,prolong circulation time,control drug release,and actively target to desired cells or tissues.However,clinical translation of NPs with the goal of treating particularly challenging diseases,such as cancer,will require a thorough understanding of how the NP properties influence their fate in biological systems,especially in vivo.Many efforts have been paid to studying the interactions and mechanisms of NPs and cells.Unless deliberately designed,the NPs in contact with biological fluids are rapidly covered by a selected group of biomolecules especially proteins to form a corona that interacts with biological systems.In this view,the recent development of NPs in drug delivery and the interactions of NPs with cells and proteins are summarized.By understanding the protein-NP interactions,some guidelines for safety design of NPs,challenges and future perspectives are discussed.展开更多
A novel hydrogen peroxide biosensor based on the BPT/AuNPs/graphene/HRP composite was developed. Firstly, graphene was prepared under the protection of polyvinylpyrrolidone (PVP), and then the AuNPs/graphene composite...A novel hydrogen peroxide biosensor based on the BPT/AuNPs/graphene/HRP composite was developed. Firstly, graphene was prepared under the protection of polyvinylpyrrolidone (PVP), and then the AuNPs/graphene composite was synthesized via in situ decoration. Using biphenyldimethanethiol (BPT) as a connector, the AuNPs/graphene composite was immobilized on the surface of the Au electrode, and whereafter the horseradish peroxidase (HRP) was decorated on the surface of the composite by adsorption. The morphology and structure of the products were characterized by XRD, SEM, TEM and UV-visible spectroscopy. The electrocatalytic performance of the resulting BPT/AuNPs/grapheme/HRP composite (namely, biosensor) was studied by electrochemical instrument. The results show that the biosensor has high sensitivity and fast response to H2O2. In the solution of pH 7.4 with potential -0.2V, the linear response of the biosensor to H2O2 ranges from 5.0×10-6 to 2.5×10-3M with the detection limit of 1.5×10-6M.展开更多
基金financially supported by the National Natural Science Foundation of China(51120135001)the National Basic Research Program of China(2011CB606203)+1 种基金Ph.D.Programs Foundation of Ministry of Education of China(20110101130005)Open Project of State Key Laboratory of Supramolecular Structure and Materials(sklssm201303)
文摘The emergence of nanoparticles(NPs)has attracted tremendous interest of the scientific community for decades due to their unique properties and potential applications in diverse areas,including drug delivery and therapy.Many novel NPs have been synthesized and used to reduce drug toxicity,improve bio-availability,prolong circulation time,control drug release,and actively target to desired cells or tissues.However,clinical translation of NPs with the goal of treating particularly challenging diseases,such as cancer,will require a thorough understanding of how the NP properties influence their fate in biological systems,especially in vivo.Many efforts have been paid to studying the interactions and mechanisms of NPs and cells.Unless deliberately designed,the NPs in contact with biological fluids are rapidly covered by a selected group of biomolecules especially proteins to form a corona that interacts with biological systems.In this view,the recent development of NPs in drug delivery and the interactions of NPs with cells and proteins are summarized.By understanding the protein-NP interactions,some guidelines for safety design of NPs,challenges and future perspectives are discussed.
基金supported by the National Natural Science Foundation of China (20875001, 20775001, 20771001, 21071002 & 20905001)the Innovation Team Fund of Anhui Province (2006KJ007TD & KJ2010A030)
文摘A novel hydrogen peroxide biosensor based on the BPT/AuNPs/graphene/HRP composite was developed. Firstly, graphene was prepared under the protection of polyvinylpyrrolidone (PVP), and then the AuNPs/graphene composite was synthesized via in situ decoration. Using biphenyldimethanethiol (BPT) as a connector, the AuNPs/graphene composite was immobilized on the surface of the Au electrode, and whereafter the horseradish peroxidase (HRP) was decorated on the surface of the composite by adsorption. The morphology and structure of the products were characterized by XRD, SEM, TEM and UV-visible spectroscopy. The electrocatalytic performance of the resulting BPT/AuNPs/grapheme/HRP composite (namely, biosensor) was studied by electrochemical instrument. The results show that the biosensor has high sensitivity and fast response to H2O2. In the solution of pH 7.4 with potential -0.2V, the linear response of the biosensor to H2O2 ranges from 5.0×10-6 to 2.5×10-3M with the detection limit of 1.5×10-6M.