Different contents of biodiesel and petrodiesel were incorporated into diesel engine oils. The oxidative stability, detergency and antiwear performance of the formulated diesel oils were evaluated. The results indicat...Different contents of biodiesel and petrodiesel were incorporated into diesel engine oils. The oxidative stability, detergency and antiwear performance of the formulated diesel oils were evaluated. The results indicated that, compared with petrodiesel, biodiesel was more liable to promote oxidation degradation of diesel oils, leading to worse oxidative stability, detergency and antiwear ability of the oils.展开更多
A soybean oil derived biodiesel was prepared and blended with a conventional No. 0 petrodiesel. The pour points (PP) and the cold filter plugging points (CFPP) of biodiesel blends were evaluated on a low-temperatu...A soybean oil derived biodiesel was prepared and blended with a conventional No. 0 petrodiesel. The pour points (PP) and the cold filter plugging points (CFPP) of biodiesel blends were evaluated on a low-temperature flow tester. Dynamic viscosities of the blends at different temperatures and different shear rates were measured on a rotary rheometer. The crystal morphologies of biodiesel blends at low temperatures were analyzed using a polarizing microscope. The results indicated that blended fuels demonstrated slight decrease in PPs and CFPPs as compared with those of neat soybean oil derived biodiesel and pure petrodiesel. Below the temperatures of PPs or CFPPs, the dynamic viscosity of biodiesel blends dramatically increased with a decreasing temperature, but decreased with an increasing shear rate, so that biodiesel blends exhibited non-Newtonian behavior. At temperatures higher than PPs or CFPPs, a linear relationship appeared between the dynamic viscosity and shear rate and biodiesel blends became Newtonian fluids. At low temperatures, wax crystals of biodiesel blends grew and agglomerated rapidly. Loss of fluidity for biodiesel blends at low temperatures could therefore be attributed on one hand to the sharp increase of viscosity and on the other hand to the rapid growth and agglomeration of wax crystals.展开更多
Biodiesel derived from indigenous feed stocks such as Tylosema esculentum kernel oil is deemed a feasible alternative to petroleum diesel for the diesel engine. This paper presents results of investigation of performa...Biodiesel derived from indigenous feed stocks such as Tylosema esculentum kernel oil is deemed a feasible alternative to petroleum diesel for the diesel engine. This paper presents results of investigation of performance and emissions characteristics of diesel engine using Tylosema biodiesel. In this investigation, Tylosema biodiesel was prepared, analyzed and compared with the performance of petroleum diesel fuel using a single cylinder compression ignition diesel engine. The specific fuel consumption, engine torque, engine brake power, hydrocarbons, carbon monoxide and carbon dioxide were analyzed. The tests showed a decrease in engine brake power and torque with increase in engine load, while specific fuel consumption showed an increasing trend with maximum variation of 33% between the two fuels at engine load of 90%. Emission levels of hydrocarbons, carbon monoxide and carbon dioxide showed an increasing trend with increase in load for both fuels. Tylosema biodiesel produced significantly lower concentrations of hydrocarbons than petroleum diesel, while levels of carbon dioxide and carbon monoxide were largely comparable to those of petroleum diesel. Soot production from combustion ofTylosema biodiesel was found to be approximately 98% lower than that from combustion of petroleum biodiesel, demonstrating insignificant contribution to environmental pollution.展开更多
Biodiesel (BD) was made from animal-fats reacting with methanol and potassium hydroxide in the laboratory. The biodiesel made in the laboratory was sent to K-petro, the government agency to inspect the quality of an...Biodiesel (BD) was made from animal-fats reacting with methanol and potassium hydroxide in the laboratory. The biodiesel made in the laboratory was sent to K-petro, the government agency to inspect the quality of animal-fats biodiesel, of which generally the quality was acceptable for heating oil for agricultural hot air heater. Kinematic viscosity and calorific values of the biodiesels were measured. BD20(K), kerosene based biodiesel, showed 18 cSt at -20 ~C. It seems that BD100 can not be suitable for heating fuel under some temperature. As BD content increased calorific value decreased up to 40,000 J/g for 100% BD (BD100) while, light oil calorific value was 45,567 J/g, showing difference of 5,567 J/g (about 12% difference), Several different fuels including BD20 (biodiesel 20% + light oil 80%), BD50 (biodiesel 50% + light oil 50%), BD100 (biodiesel 100%) and light oil were prepared and tested for fuel combustion qualities for agricultural hot air heater and their combustion performances were compared and analyzed. Flame dimensions of biodiesels and light oil were almost same shape at the same combustion condition in the burner of the hot air heater. Generally, CO2 amounts of BDs were greater than light oil, but the differences were so small that it is hard to tell there was significant difference between the BDs combustion and light oil.展开更多
基金the financial support from the Natural Science Foundation of Chongqing(Project NO. CSTC, 2011JJA90020)the Science Foundation for Young Teachers of Logistical Engineering University
文摘Different contents of biodiesel and petrodiesel were incorporated into diesel engine oils. The oxidative stability, detergency and antiwear performance of the formulated diesel oils were evaluated. The results indicated that, compared with petrodiesel, biodiesel was more liable to promote oxidation degradation of diesel oils, leading to worse oxidative stability, detergency and antiwear ability of the oils.
基金the financial support of the Natural Science Foundation of Chongqing(project No.CSTC2006BA6031)the Program for New Century Excellent Talents in Chinese Universities(project No.NCET-04-1002)
文摘A soybean oil derived biodiesel was prepared and blended with a conventional No. 0 petrodiesel. The pour points (PP) and the cold filter plugging points (CFPP) of biodiesel blends were evaluated on a low-temperature flow tester. Dynamic viscosities of the blends at different temperatures and different shear rates were measured on a rotary rheometer. The crystal morphologies of biodiesel blends at low temperatures were analyzed using a polarizing microscope. The results indicated that blended fuels demonstrated slight decrease in PPs and CFPPs as compared with those of neat soybean oil derived biodiesel and pure petrodiesel. Below the temperatures of PPs or CFPPs, the dynamic viscosity of biodiesel blends dramatically increased with a decreasing temperature, but decreased with an increasing shear rate, so that biodiesel blends exhibited non-Newtonian behavior. At temperatures higher than PPs or CFPPs, a linear relationship appeared between the dynamic viscosity and shear rate and biodiesel blends became Newtonian fluids. At low temperatures, wax crystals of biodiesel blends grew and agglomerated rapidly. Loss of fluidity for biodiesel blends at low temperatures could therefore be attributed on one hand to the sharp increase of viscosity and on the other hand to the rapid growth and agglomeration of wax crystals.
文摘Biodiesel derived from indigenous feed stocks such as Tylosema esculentum kernel oil is deemed a feasible alternative to petroleum diesel for the diesel engine. This paper presents results of investigation of performance and emissions characteristics of diesel engine using Tylosema biodiesel. In this investigation, Tylosema biodiesel was prepared, analyzed and compared with the performance of petroleum diesel fuel using a single cylinder compression ignition diesel engine. The specific fuel consumption, engine torque, engine brake power, hydrocarbons, carbon monoxide and carbon dioxide were analyzed. The tests showed a decrease in engine brake power and torque with increase in engine load, while specific fuel consumption showed an increasing trend with maximum variation of 33% between the two fuels at engine load of 90%. Emission levels of hydrocarbons, carbon monoxide and carbon dioxide showed an increasing trend with increase in load for both fuels. Tylosema biodiesel produced significantly lower concentrations of hydrocarbons than petroleum diesel, while levels of carbon dioxide and carbon monoxide were largely comparable to those of petroleum diesel. Soot production from combustion ofTylosema biodiesel was found to be approximately 98% lower than that from combustion of petroleum biodiesel, demonstrating insignificant contribution to environmental pollution.
文摘Biodiesel (BD) was made from animal-fats reacting with methanol and potassium hydroxide in the laboratory. The biodiesel made in the laboratory was sent to K-petro, the government agency to inspect the quality of animal-fats biodiesel, of which generally the quality was acceptable for heating oil for agricultural hot air heater. Kinematic viscosity and calorific values of the biodiesels were measured. BD20(K), kerosene based biodiesel, showed 18 cSt at -20 ~C. It seems that BD100 can not be suitable for heating fuel under some temperature. As BD content increased calorific value decreased up to 40,000 J/g for 100% BD (BD100) while, light oil calorific value was 45,567 J/g, showing difference of 5,567 J/g (about 12% difference), Several different fuels including BD20 (biodiesel 20% + light oil 80%), BD50 (biodiesel 50% + light oil 50%), BD100 (biodiesel 100%) and light oil were prepared and tested for fuel combustion qualities for agricultural hot air heater and their combustion performances were compared and analyzed. Flame dimensions of biodiesels and light oil were almost same shape at the same combustion condition in the burner of the hot air heater. Generally, CO2 amounts of BDs were greater than light oil, but the differences were so small that it is hard to tell there was significant difference between the BDs combustion and light oil.