期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Modified graphene‐based materials as effective catalysts for transesterification of rapeseed oil to biodiesel fuel 被引量:6
1
作者 Justina Gaidukevic Jurgis Barkauskas +4 位作者 Anna Malaika Paulina Rechnia-Goracy Aleksandra Mozdzynska Vitalija Jasulaitiene Mieczyslaw Kozlowski 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第10期1633-1645,共13页
Production of biodiesel by the transesterification process using different modified graphene‐based materials as catalysts was studied.Solid acid graphene‐based samples were prepared by grafting sulfonic or phosphate... Production of biodiesel by the transesterification process using different modified graphene‐based materials as catalysts was studied.Solid acid graphene‐based samples were prepared by grafting sulfonic or phosphate groups on the surface of thermally reduced graphene oxide.The obtained materials were thoroughly characterized using scanning electron microscopy,X‐ray diffraction,thermogravimetric analysis,X‐ray photoelectron spectroscopy,N2 adsorption‐desorption measurements,potentiometric titration,elemental analysis,and Fourier transform infrared spectroscopy.The prepared catalysts were tested in the transesterification of rapeseed oil with methanol at 130°C under pressure,and their activities were compared to the performance of a commercially available heterogeneous acidic catalyst,Amberlyst‐15.All modified samples were active in the transesterification process;however,significant differences were observed in the yield of biodiesel,depending on the method of catalyst preparation and strength of the acidic sites.The highest yield of fatty acid methyl esters of 70%was obtained for thermally reduced graphene oxide functionalized with 4‐benzenediazonium sulfonate after 6 h of processing,and this result was much higher than that obtained for the commercial catalyst Amberlyst‐15.The results of the reusability test were also promising. 展开更多
关键词 GRAPHENE Surface functionalization Acidic catalyst Sulfonic group TRANSESTERIFICATION BIODIESEL
下载PDF
Spectroscopic Analysis of Structural Transformation in Biodiesel Oxidation 被引量:4
2
作者 Wu Jiang Chen Boshui +1 位作者 Fang Jianhua Wang Jiu 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2013年第3期28-32,共5页
The oxidation behavior of three biodiesels of different origins,viz.rapeseed oil derived biodiesel,soybean oil derived biodiesel and waste oil based biodiesel,were tested on an oxidation tester.The chemical compositio... The oxidation behavior of three biodiesels of different origins,viz.rapeseed oil derived biodiesel,soybean oil derived biodiesel and waste oil based biodiesel,were tested on an oxidation tester.The chemical compositions of the biodiesels were characterized by gas chromatography.Thereafter,the structural transformation of fatty acid methyl ester(FAME)of the biodiesels was analyzed by an infrared spectrometer and an ultraviolet absorption spectrometer.The results demonstrated that the oxidation behavior of biodiesels of different origins was closely related to the composition and distribution of FAMEs.Higher concentration of unsaturated FAME with multi-double bonds exhibited poorer oxidation resistance.Furthermore,cis-trans isomerization transformation occurred in the unsaturated FAME molecules and conjugated double-bond produced during the oxidation process of biodiesel.Greater cis-trans variations corresponded to deeper oxidation degree.The higher the content of unsaturated FAME with multi-double bonds in a biodiesel,the more the conjugated double bonds was formed. 展开更多
关键词 BIODIESEL OXIDATION structural transformation spectroscopic analysis
下载PDF
贻贝仿生修饰多孔磁性材料的制备及其在固定化脂肪酶中的应用
3
作者 李佥 王添誉 +6 位作者 孙西同 陈晓艺 李苗 韩雨擎 曾祥冰 孙芳鸿 李宪臻 《复合材料学报》 EI CAS CSCD 北大核心 2024年第11期6156-6169,共14页
本文制备了一种以磁性壳聚糖为基材的多孔复合材料,通过在其表面涂覆聚多巴胺涂层替代传统的交联剂,用于脂肪酶的固定化研究。该材料具有优异的孔结构和较大的比表面积,孔容积可达0.6028 mL/g,比表面积可达106.8239 m^(2)/g,经优化后固... 本文制备了一种以磁性壳聚糖为基材的多孔复合材料,通过在其表面涂覆聚多巴胺涂层替代传统的交联剂,用于脂肪酶的固定化研究。该材料具有优异的孔结构和较大的比表面积,孔容积可达0.6028 mL/g,比表面积可达106.8239 m^(2)/g,经优化后固定化脂肪酶的酶活可达(7392.91±121.22)U/g-载体。进一步探究了固定化酶的酶学性质,得到最佳反应温度为50℃,最佳反应pH为7.0,制备的固定化酶具有优异的热稳定性和pH稳定性,经过5次循环使用后,该固定化酶可以保持80%以上的初始酶活,经过10次循环使用后仍能保持52%的初始酶活。最后,将固定化酶应用于生物柴油转化并优化了相关工艺参数。 展开更多
关键词 磁性材料 贻贝仿生 脂肪酶 酶学性质 生物柴油转化
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部