期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于MaxEnt模型的菜豆象全球潜在适生区预测 被引量:7
1
作者 徐养诚 刘孝贤 +2 位作者 王婷 李东育 高桂珍 《生物安全学报》 CSCD 北大核心 2021年第3期213-219,共7页
【目的】菜豆象是重要的检疫性害虫,预测其在全球范围内的潜在适生区可为农业部门开展菜豆象防控工作和检验检疫部门制定检疫策略提供科学依据。【方法】在收集菜豆象已有分布点和全球气象数据的基础上,采用MaxEnt模型对其在全球范围内... 【目的】菜豆象是重要的检疫性害虫,预测其在全球范围内的潜在适生区可为农业部门开展菜豆象防控工作和检验检疫部门制定检疫策略提供科学依据。【方法】在收集菜豆象已有分布点和全球气象数据的基础上,采用MaxEnt模型对其在全球范围内的潜在适生区进行预测分析。【结果】MaxEnt模型的AUC平均值为0.926,预测结果准确可靠。菜豆象适生区主要分布在欧洲中西部的德国、法国、英国、荷兰、比利时、意大利、波兰、乌克兰、白俄罗斯和罗马尼亚等国家,非洲大陆和马达加斯加岛的中东部地区,北美洲的墨西哥高原和美国中东部地区,南美洲南部地区,大洋洲澳大利亚东部和南部沿海地区、新西兰,亚洲中国的云贵高原、四川盆地、华中和华南地区和台湾岛,缅甸东部地区、泰国和老挝北部地区、尼泊尔和日本大部分地区。高度适生区、中度适生区和低度适生区面积分别占陆地面积的4.95%、6.73%和13.70%。【结论】菜豆象的适生区面积占陆地面积的25.38%,持续扩散和危害的风险大。我国西南、华南地区等地区面临的形势更为严峻。影响菜豆象分布的主要生物气候因素有最冷月份最低温度、年平均温度、年气温变化范围、年降雨量、最干月份降雨量、最热月份最高温度、最暖季度平均温度、温度季节变化方差、昼夜温差月均值等。 展开更多
关键词 菜豆象 MAXENT 潜在适生区 生物气候因素
下载PDF
Oribatid Use as Bioindicateur of Environment: Case of Galumna sp. and Scheloribates sp. (Acari: Oribatida)
2
作者 Ghezali Djelloul Harkat Hafsa 《Journal of Life Sciences》 2012年第5期518-527,共10页
Environmental characteristics are often the factors that determine the distribution of species in nature. However, species response vis-A-vis these factors differs. For a better understanding of the phenomenon, we hav... Environmental characteristics are often the factors that determine the distribution of species in nature. However, species response vis-A-vis these factors differs. For a better understanding of the phenomenon, we have conducted this study which consists of following the spatio-temporal evolution of two species of Oribatida (Scheloribates sp. and Galumna sp.). The sites which have been the subject of this study, are situated in different bioclimatic zones presenting a very different climatic, edaphic, nutritional, and altitudinal characteristics. The variability of ecological factors showed that the behavior of two species differs. Indeed, Scheloribates sp. is present in all sites except in Biskra whereas Galumna sp. is present only in sites belonging to humid and sub humid bioclimatic zones. Moreover, Scheloribates sp. appears more tolerant of environmental changes while Galumna sp. is more stringent and its presence is marked only in the sites where ecological conditions are better. Thus, it can be noted that the spatial and temporal distribution of oribatid is not only conditioned solely by environmental factors but also by intrinsic factors specific to each species. The specific behavior of Galumna sp. and the tolerance of Scheloribates sp. are interesting and can be the subject of bioindicator species that can inform us about the changes that effect whether natural or anthropogenic environment. 展开更多
关键词 ORIBATIDA ecological factors area bioclimatic spatiotemporal.
下载PDF
基于MaxEnt模型的菜豆象和蚕豆象在中国的适生区预测 被引量:1
3
作者 易山青 彭硕 +3 位作者 贾涛 王雁楠 黄宏坤 赵紫华 《植物保护学报》 CAS CSCD 北大核心 2023年第6期1480-1490,共11页
为减少外来入侵物种菜豆象Acanthoscelides obtectus和蚕豆象Bruchus rufimanus对中国造成的潜在威胁,收集这2种豆象的全球地理分布数据,采用Pearson相关性分析和主成分分析分别从19个环境变量中筛选关键环境变量,采用MaxEnt模型对历史... 为减少外来入侵物种菜豆象Acanthoscelides obtectus和蚕豆象Bruchus rufimanus对中国造成的潜在威胁,收集这2种豆象的全球地理分布数据,采用Pearson相关性分析和主成分分析分别从19个环境变量中筛选关键环境变量,采用MaxEnt模型对历史气候条件下和未来气候情景下这2种豆象在中国的适生区进行预测,并对预测结果进行分析。结果显示,经Pearson相关性分析共筛选出4个关键环境变量用于菜豆象适生性区的模型构建,分别为最暖季度平均温度、最干月份降水量、年气温变化范围及最湿季度降水量,其对MaxEnt模型的累积贡献率分别为31.6%、28.4%、26.3%和13.7%;经Pearson相关性分析共筛选出4个主要关键环境变量用于蚕豆象适生性区的模型构建,分别为最冷季度平均温度、最干月份降水量、最热月份最高温度和最湿月份降水量,其对MaxEnt模型的累积贡献率分别为48.5%、39.5%、7.8%和4.2%。MaxEnt模型重复运行10次后,菜豆象训练数据的平均AUC值为0.938,蚕豆象训练数据的平均AUC值为0.963,均显著高于随机模型的AUC值,表明基于MaxEnt模型的菜豆象和蚕豆象在中国适生区的预测结果准确。未来气候情景下,这2种豆象在中国的适生区均呈现向北扩张的趋势,需加强对这2种豆象的检疫与防治,严防发生区域进一步扩大。 展开更多
关键词 菜豆象 蚕豆象 MaxEnt模型 生物入侵 适生区 生物气候因素
原文传递
Soil Microbial Activities in Beech Forests Under Natural Incubation Conditions as Affected by Global Warming 被引量:3
4
作者 S.LU Q.WANG +2 位作者 S.KATAHATA M.NARAMOTO H.MIZUNAGA 《Pedosphere》 SCIE CAS CSCD 2014年第6期709-721,共13页
Microbial activity in soil is known to be controlled by various factors. However, the operating mechanisms have not yet been clearly identified, particularly under climate change conditions, although they are crucial ... Microbial activity in soil is known to be controlled by various factors. However, the operating mechanisms have not yet been clearly identified, particularly under climate change conditions, although they are crucial for understanding carbon dynamics in terrestrial ecosystems. In this study, a natural incubation experiment was carried out using intact soil cores transferred from high altitude(1 500 m) to low(900 m) altitude to mimic climate change scenarios in a typical cold-temperate mountainous area in Japan. Soil microbial activities, indicated by substrate-induced respiration(SIR) and metabolic quotient(q CO2), together with soil physicalchemical properties(abiotic factors) and soil functional enzyme and microbial properties(biotic factors), were investigated throughout the growing season in 2013. Results of principal component analysis(PCA) indicated that soil microbial biomass carbon(MBC) andβ-glucosidase activity were the most important factors characterizing the responses of soil microbes to global warming. Although there was a statistical difference of 2.82 ℃ between the two altitudes, such variations in soil physical-chemical properties did not show any remarkable effect on soil microbial activities, suggesting that they might indirectly impact carbon dynamics through biotic factors such as soil functional enzymes. It was also found that the biotic factors mainly controlled soil microbial activities at elevated temperature,which might trigger the inner soil dynamics to respond to the changing environment. Future studies should hence take more biotic variables into account for accurately projecting the responses of soil metabolic activities to climate change. 展开更多
关键词 biotic factors carbon dynamics metabolic quotient microbial biomass soil enzymes soil respiration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部