期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
溧阳市第二污水厂生物水池池壁钢筋混凝土施工
1
作者 郭泽海 《葛洲坝集团科技》 2010年第3期-,共3页
本文介绍江苏省溧阳市第二污水厂生物水池(高墙薄壁结构)钢筋混凝土的施工技术。
关键词 溧阳市第二污水厂 生物水池 施工
下载PDF
溧阳市第二污水厂生物水池池壁钢筋混凝土施工
2
作者 郑彦兵 郭泽海 《四川水利》 2011年第3期81-83,共3页
介绍江苏省溧阳市第二污水厂生物水池(高墙薄壁结构)钢筋混凝土的施工技术,包括施工方案、原材料和设备配备、具体施工方法及质量检查等。
关键词 溧阳市第二污水厂 生物水池 钢筋混凝土施工
下载PDF
Electricity generation during wastewater treatment by a microbial fuel cell coupled with constructed wetland 被引量:13
3
作者 李先宁 宋海亮 +1 位作者 项文力 吴磊 《Journal of Southeast University(English Edition)》 EI CAS 2012年第2期175-178,共4页
A membrane-less constructed wetland microbial fuel cell (CW-MFC) is constructed and operated under continuous flow with a hydraulic retention time (HRT) of 2 d. Fed with glucose, the CW-MFC generates a stable curr... A membrane-less constructed wetland microbial fuel cell (CW-MFC) is constructed and operated under continuous flow with a hydraulic retention time (HRT) of 2 d. Fed with glucose, the CW-MFC generates a stable current density of over 2 A/m3 with a resistor of 1 kΩ and has a chemical oxygen demand (COD) removal efficiency of more than 90% after the startup of 2 to 3 d. A series of systems with the electrode spacings of 10, 20, 30 and 40 cm are compared. It is found that the container with the electrode spacing of 20 cm gains the highest voltage of 560 mV, the highest power density of 0. 149 W/m 3, and the highest Coulombic efficiency of 0.313%. It also has the highest COD removal efficiency of 94. 9%. In addition, the dissolved oxygen (DO) concentrations are observed as the lowest level in the middle of all the CW-MFC reactors. The results show that the more COD is removed, the greater power is generated, and the relatively higher Coulombic efficiency will be achieved. The present study indicates that the CW-MFC process can be used as a cost-effective and environmentally friendly wastewater treatment with simultaneous power generation. 展开更多
关键词 constructed wetland microbial fuel cell wastewater treatment electricity generation electrode spacing
下载PDF
Contrasting patterns of free-living bacterioplankton diversity in macrophyte-dominated versus phytoplankton blooming regimes in Dianchi Lake,a shallow lake in China 被引量:3
4
作者 王毓菁 李化炳 +1 位作者 邢鹏 吴庆龙 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2017年第2期336-349,共14页
Freshwater shallow lakes typically exhibit two alternative stable states under certain nutrient loadings:macrophyte-dominated and phytoplankton-dominated water regimes.An ecosystem regime shift from macrophytes to phy... Freshwater shallow lakes typically exhibit two alternative stable states under certain nutrient loadings:macrophyte-dominated and phytoplankton-dominated water regimes.An ecosystem regime shift from macrophytes to phytoplankton blooming typically reduces the number of species of invertebrates and fishes and results in the homogenization of communities in freshwater lakes.We investigated how microbial biodiversity has responded to a shift of the ecosystem regime in Dianchi Lake,which was previously fully covered with submerged macrophytes but currently harbors both ecological states.We observed marked divergence in the diversity and community composition of bacterioplankton between the two regimes.Although species richness,estimated as the number of operational taxonomic units and phylogenetic diversity(PD),was higher in the phytoplankton dominated ecosystem after this shift,the dissimilarity of bacterioplankton community across space decreased.This decrease in beta diversity was accompanied by loss of planktonic bacteria unique to the macrophyte-dominated ecosystem.Mantel tests between bacterioplankton community distances and Euclidian distance of environmental parameters indicated that this reduced bacterial community differentiation primarily reflected the loss of environmental niches,particularly in the macrophyte regime.The loss of this small-scale heterogeneity in bacterial communities should be considered when assessing long-term biodiversity changes in response to ecosystem regime conversions in freshwater lakes. 展开更多
关键词 bacterioplankton biodiversity regime shift MACROPHYTE PHYTOPLANKTON
下载PDF
Synergism of Novel Sequence Bio-ecological Process and Biological Aerated Filter for Sewage Treatment in Cold Climate 被引量:3
5
作者 张鹏 海热提 +2 位作者 周东凯 何一群 白志远 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第5期881-890,共10页
A lab-scale integrated treatment system including the novel sequence bio-ecological process (SBEP) and biological aerated filter (BAF) for a sewage mixture (chemistry laboratory wastewater and domestic sewage) w... A lab-scale integrated treatment system including the novel sequence bio-ecological process (SBEP) and biological aerated filter (BAF) for a sewage mixture (chemistry laboratory wastewater and domestic sewage) was presented in this paper. The main objective of the study was to test the contribution of artificial aeration, recir-culation ratio and mass concentration of steel slag on pollutant removal in winter when the plants are dormant. It had been shown that SBEP and BAF play different roles in removing contaminants from wastewater. During the airflow experiment, the removal efficiency of COD and TP in SBEP was higher than that in BAF, whereas BAF can compensate for the deficiency of SBEP where no significant improvement on ammonium nitrogen removal is ob-served. Yet, the removal etticiencies of COD,TP and NH4^+ -N in SBEP could be improved apparently when ditterent recireulation ratio or various mass concentration of steel were applied. Especially, when the airflow of 0.06 L·h^-1, the recirculation ratio rate of 80% and the mass concentration of steel of 2.2-2.4 g·L^-1 were applied, thehighest efficiency of 94.6%, 77.9% and 80.7% for COD, TP and NH4^+ -N were achieved,-respectively,The integrated treatment system of SBEP and BAF was proved to be an effective wastewater treatment technique and a better alternative to treat domestic sewage. 展开更多
关键词 vertical subsurface constructed wetlands biological aerated filter bio-contact oxidation process car-bon fiber AERATION recirculation ratio
下载PDF
Electricity Generation Using Membrane-less Microbial Fuel Cell during Wastewater Treatment 被引量:11
6
作者 杜竹玮 李清海 +2 位作者 佟萌 李少华 李浩然 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第5期772-777,共6页
An upflow mode membrane-less microbial fuel cell (ML-MFC) was designed for wastewater treatment. Granular graphite electrodes, which are flexible in size, were adopted in the ML-MFC. Microbes present in anaerobic ac... An upflow mode membrane-less microbial fuel cell (ML-MFC) was designed for wastewater treatment. Granular graphite electrodes, which are flexible in size, were adopted in the ML-MFC. Microbes present in anaerobic activated sludge were used as the biocatalyst and artificial wastewater was tested as substrate. During the electrochemically active microbe enrichment stage, a stable power output of 536 mW.m-3 with reference to the anode volume was generated by the ML-MFC running in batch mode. The voltage output decreased from 203 mV to about 190 mV after the ML-MFC was changed from batch mode to normally continuous mode, indicating that planktonic electrochemically active bacterial strains in the ML-MFC may be carried away along with the effluent. Cyclic voltammograms showed that the attached microbes possessed higher bioelectrochemical activity than the planktonic microbes. Forced aeration to the cathode benefited the electricity generation obviously. Higher feeding rate and longer electrode distance both increased the electricity generation. The coulombic yield was not more than 20% throughout the study, which is lower than that of MFCs with membrane. It is proposed that dissolved oxygen diffused from the cathode to the anode may consume part of the substrate. 展开更多
关键词 microbial fuel cell membrane-less wastewater treatment
下载PDF
A system combining microbial fuel cell with photobioreactor for continuous domestic wastewater treatment and bioelectricity generation 被引量:9
7
作者 蒋海明 罗生军 +2 位作者 师晓爽 戴萌 郭荣波 《Journal of Central South University》 SCIE EI CAS 2013年第2期488-494,共7页
A coupled system consisting of an upflow membrane-less microbial fuel cell (upflow ML-MFC) and a photobioreactor was developed, and its effectiveness for continuous wastewater treatment and electricity production was ... A coupled system consisting of an upflow membrane-less microbial fuel cell (upflow ML-MFC) and a photobioreactor was developed, and its effectiveness for continuous wastewater treatment and electricity production was evaluated. Wastewater was fed to the upflow ML-MFC to remove chemical oxygen demand (COD), phosphorus and nitrogen with simultaneous electricity generation. The effluent from the cathode compartment of the upflow ML-MFC was then continuously fed to an external photobioreactor for removing the remaining phosphorus and nitrogen using microalgae. Alone, the upflow ML-MFC produces a maximum power density of 481 mW/m 3 , and obtains 77.9% COD, 23.5% total phosphorus (TP) and 97.6% NH4+-N removals. When combined with the photobioreactor, the system achieves 99.3% TP and 99.0% NH4+-N total removal. These results show both the effectiveness and the potential application of the coupled system to continuously treat domestic wastewater and simultaneously generate electricity and biomass. 展开更多
关键词 wastewater treatment microbial fuel cell PHOTOBIOREACTOR MICROALGAE BIOELECTRICITY
下载PDF
Advanced treatment of biologically pretreated coking wastewater by intensified zero-valent iron process(IZVI) combined with anaerobic filter and biological aerated filter(AF/BAF) 被引量:4
8
作者 潘碌亭 韩悦 吴锦峰 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期3781-3787,共7页
Experiments were conducted to investigate the behavior of the sequential system of intensified zero-valent iron process(IZVI) and anaerobic filter and biological aerated filter(AF/BAF) reactors for advanced treatment ... Experiments were conducted to investigate the behavior of the sequential system of intensified zero-valent iron process(IZVI) and anaerobic filter and biological aerated filter(AF/BAF) reactors for advanced treatment of biologically pretreated coking wastewater. Particular attention was paid to the performance of the integrated system for the removal of chemical oxygen demand(COD), ammonia nitrogen(NH3-N) and total nitrogen(TN). The average removal efficiencies of COD, NH3-N and TN were 76.28%, 96.76% and 59.97%, with the average effluent mass concentrations of 56, 0.53 and 18.83 mg/L, respectively, reaching the first grade of the national discharge standard. Moreover, the results of gas chromatography/mass spectrum(GC/MS) and gel permeation chromatography(GPC) analysis demonstrated that the refractory organic compounds with high relative molecular mass were partly removed in IZVI process by the function of oxidation-reduction, flocculation and adsorption which could also enhance the biodegradability of the system effluent. The removal efficiencies of NH3-N and TN were achieved mainly in the subsequent AF/BAF reactors by nitrification and denitrification. Overall, the results obtained show that the application of IZVI in combination with AF/BAF is a promising technology for advanced treatment of biologically pretreated coking wastewater. 展开更多
关键词 advanced treatment coking wastewater intensified zero valent iron BIOFILTER
下载PDF
Experimental Investigation of Environmental Hydraulic Parameters for Dual Mixed Media Biofilter for Greywater Treatment 被引量:1
9
作者 Karim Rashid Gubashi 《Journal of Environmental Science and Engineering(A)》 2012年第8期986-992,共7页
Laboratory scale model of DMMBF (dual mixed media biofilter) were designed and installed in AI-Mustansiriya University Environmental Hydraulic Lab. Experiments were conducted using two mixed layers through PVR colum... Laboratory scale model of DMMBF (dual mixed media biofilter) were designed and installed in AI-Mustansiriya University Environmental Hydraulic Lab. Experiments were conducted using two mixed layers through PVR column--2.2 m height and 300 mm diameter. The first mixed media filter of depth 640mm mixed of sand, rice husk and granular activated carbon. The percentage volume mix is 1:1:1. While the other mixed media of depth 740 mm, consisting of coal, crash porcelinaite, rock and granite with equally percentage volume. Fifty samples were collected during the experiments, which was spread over a period of forty two weeks. The obtained results indicate that when the flow loading raised from 0.15 L/min to 2.7 L/rain, the removal efficiency of BOD decreased 8%-11%, and the removal efficiency of COD deceased 3%-4%, while the removal efficiency of turbidity increased with the decreasing of hydraulic loading. The results showed that the removal efficiency of turbidity is more than 95% at the lower discharge (0.15 L/min). Therefore, infiltration should be conservatively designed using low loading rates. 展开更多
关键词 Hydraulic parameters dual mixed media greywater treatment removal efficiency TURBIDITY COD BOD.
下载PDF
Microbial Electrolysis Cells for Hydrogen Production 被引量:2
10
作者 Li-juan Xiang Ling Dai +3 位作者 Ke-xin Guo Zhen-hai Wen Su-qin Ci Jing-hong Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第3期263-284,I0002,共23页
Microbial electrolysis cells(MECs)present an attractive route for energy-saving hydrogen(H2)production along with treatment of various wastewaters,which can convert organic matter into H2 with the assistance of microb... Microbial electrolysis cells(MECs)present an attractive route for energy-saving hydrogen(H2)production along with treatment of various wastewaters,which can convert organic matter into H2 with the assistance of microbial electrocatalysis.However,the development of such renewable technologies for H2 production still faces considerable challenges regarding how to enhance the H2 production rate and to lower the energy and the system cost.In this review,we will focus on the recent research progress of MEC for H2 production.First,we present a brief introduction of MEC technology and the operating mechanism for H2 production.Then,the electrode materials including some typical electrocatalysts for hydrogen production are summarized and discussed.We also highlight how various substrates used in MEC affect the associated performance of hydrogen generation.Finally we presents several key scientific challenges and our perspectives on how to enhance the electrochemical performance. 展开更多
关键词 Microbial electrolysis cells H2 production ELECTROCATALYSIS Wastewater treatment Electrode materials
下载PDF
Phosphorus Reduction from Urban Wastewater Treatment Plant with Trickling Filters
11
作者 Faruk Hajrizi Shefqet Rashani +3 位作者 Spiro Drushku Rasim Veseli Shehide Kaqkini-Hajrizi Sadete Hajrizi 《Journal of Environmental Science and Engineering(B)》 2015年第7期354-358,共5页
The purpose of this research is to investigate a biofilm system with trickling filter as a biological alternative process during low cost treatment connection with the possibility of reducing nutrients such as phospho... The purpose of this research is to investigate a biofilm system with trickling filter as a biological alternative process during low cost treatment connection with the possibility of reducing nutrients such as phosphorus. Given that nitrogen with phosphorus that are leading causes of algal bloom resulting in increased eutrophication or chemical nutrients are the basis of this document analysis. This increase in organisms results in less oxygen in water bodies and at times, slow decay leads many fresh water ponds, lakes and rivers. The process of eutrophication unfortunately tends to favor pollution and algae, which reduce the quality of the water. Kosovo has not a long tradition in the treatment of wastewater, especially in removing phosphorus, since the country has only a plant for wastewater treatment. The present plant is intended to protect the Klina river from eutrophication from wastewater discharged after treatment. This plant currently reduced phosphorus efficiently, but the goal of this paper is to increase the percentage of removal of phosphorus to 40% through trickling filters, presenting options for optimizing work on plant Skenderaj. 展开更多
关键词 WASTEWATER trickling filters phosphorus removal eutrophication.
下载PDF
Removal of Iron, Coliforms and Acidity from Ground Water Obtained from Shallow Aquifer Using Trickling Filter Method
12
作者 Elijah Ige Ohimain Tariwari Angaye Kenneth Okiongbo 《Journal of Environmental Science and Engineering(A)》 2013年第9期549-555,共7页
Ground water is a major source of drinking water. In the Niger Delta, the ground water is unfit for human consumption due to high concentration of iron, coliforms and acidity. In an attempt to make the water potable, ... Ground water is a major source of drinking water. In the Niger Delta, the ground water is unfit for human consumption due to high concentration of iron, coliforms and acidity. In an attempt to make the water potable, groundwater samples were collected from domestic boreholes and analyzed for physicochemical and microbial parameters using standard analytical methods. The groundwater samples were collected after single and double trickling filter treatment. The treated water from the single and double trickling filter was similarly analyzed. Results show that after treatment, iron decreased from 5.23-9.96 mg/L in the raw water to 1.67-2.02 mg/L in the single treatment and 0.05-0.31 mg/L in the double treated water (P 〈 0.05). Similarly, pH increased from 4.39-5.17 in the raw water to 5.31-5.87 in the single treatment and 6.09-6.90 in the double treatment (P 〈 0.05). Coliforms decreased from 60-85 MPN/100 mL in the raw water to 3-10 MPN/100 mL in the single treatment and 0-2 MPN/100 mL in the double treatment (P 〈 0.05). Based on the findings of this study, it is recommended that it is unsafe to drink untreated groundwater as currently practiced in the Niger Delta, but should be subjected to double trickling filter treatment and chlorination before consumption. 展开更多
关键词 ACIDITY COLIFORMS IRON water analysis water treatment ground water trickling filter.
下载PDF
Assessment of Water Microbiologic Pollution in Durres's Marine Harbour Basin, Albania
13
作者 Laura Gjyli Lindita Mukli 《Journal of Life Sciences》 2010年第4期32-38,共7页
The aim of this study is to assess the water microbiologic pollution in Durres's Harbour basin and to compare it with European standards. The comparison of heterotrophs and total coliforms level in sampling are the e... The aim of this study is to assess the water microbiologic pollution in Durres's Harbour basin and to compare it with European standards. The comparison of heterotrophs and total coliforms level in sampling are the essence of this research. The object of this study is done in four sampling areas of Durres's Harbour basin. In order to compare the level of water microbiologic pollution in four areas of Durres's Harbour basin, control area is also studied which is a beach area near the Harbour named Apollonia Beach. The sampling areas were: Ferry Terminal (FT), Fishery Harbor (FH), East Zone (EZ), Fuel Quay (FQ) and Apollonia Beach (AB), respectively. The period of sample-taking was July-October 2008. The strategy used for this purpose consisted in water insemination with coverage method by means of Petri's plates according to respective dilutions in culture media Plate Count Agar (PCA) for heterotrophs and MacConkey for total coliforms. The number of colonies that are formed determines the number of cells at the moment of water insemination, the number of heterotrophs in culture media PCA, respectively. The number of pink and red colonies that were formed determines the number of cells at the moment of water insemination, the number of total coliforms in culture media MacConkey, respectively. The measure ofheterotrophic bacteria and total coliforms used is Colony-Forming Units (CFU)/100 mL seawater. (AB) is within European standards. The richest area with heterotrophs is (FH), which confirms the fact that it is the most polluted microbiologic area in the Harbour basin of Durres. The richest area with total coliforms is (FT). The poorest area with heterotrophs and total coliforms is (FQ). 展开更多
关键词 ASSESSMENT water microbiologic pollution heterotrophic bacteria total coliforms Durres's Marine Harbour basin.
下载PDF
Simultaneous Carbon and Nitrogen Removal in Wastewater Treatment Using a Partially Packed Biological Aerated Filter (BAF) without Backwashing Process
14
作者 Z. Amir S. Fatihah +1 位作者 M. Denecke S.M. Zain 《Journal of Environmental Science and Engineering》 2010年第7期15-23,共9页
Biological aerated filter (BAF) is an advanced oxidation process that can sustain high volumetric loads with high quality effluent. However, backwashing process needed for the system limits its applicability. This s... Biological aerated filter (BAF) is an advanced oxidation process that can sustain high volumetric loads with high quality effluent. However, backwashing process needed for the system limits its applicability. This study is to investigate the possibility of removing carbon and nitrogen simultaneously in a biological aerated filter (BAF) with partially packed media without any backwashing process. The upper part of BAF up to 0.5 m depth is packed with plastic media (Kaldnes K1) with diameter and length of 10 mm and 7 mm respectively. This partially packed BAF creates a hybrid system of attached growth and suspended growth combined in a single reactor. Three C:N ratios, i.e. 15, 10 and 4, were compared during this study by varying the nitrogen loading while the carbon loading was kept constant at 1.0±0.54 kg COD/(m^3·d). The organic loading rate (OLR) ratios were calculated based on carbon and TKN loading. The carbon removal percentage of 86.7±7.3%, 85.1±10.3%, and 91.0±5.6% and TKN removal percentage of 24.7±11.6%, 48.0±25.9% and 62.8±7.9% were achieved after steady-state for the C:N ratio of 15, 10, and 4 respectively. Suspended solid concentration in the effluent was found to be high throughout the treatment, but no clogging occurred during the 4 months of operation period even though backwashing was eliminated. 展开更多
关键词 BAF carbon removal NITRIFICATION BACKWASHING C:N ratio
下载PDF
Carbon pools and fluxes in the China Seas and adjacent oceans 被引量:13
15
作者 Nianzhi JIAO Yantao LIANG +23 位作者 Yongyu ZHANG Jihua LIU Yao ZHANG Rui ZHANG Meixun ZHAO Minhan DAI Weidong ZHAI Kunshan GAO Jinming SONG Dongliang YUAN Chao LI Guanghui LIN Xiaoping HUANG Hongqiang YAN Limin HU Zenghu ZHANG Long WANG Chunjie CAO Yawei LUO Tingwei LUO Nannan WANG Hongyue DANG Dongxiao WANG Si ZHANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第11期1535-1563,共29页
The China Seas include the South China Sea, East China Sea, Yellow Sea, and Bohai Sea. Located off the Northwestern Pacific margin, covering 4700000 km^2 from tropical to northern temperate zones, and including a vari... The China Seas include the South China Sea, East China Sea, Yellow Sea, and Bohai Sea. Located off the Northwestern Pacific margin, covering 4700000 km^2 from tropical to northern temperate zones, and including a variety of continental margins/basins and depths, the China Seas provide typical cases for carbon budget studies. The South China Sea being a deep basin and part of the Western Pacific Warm Pool is characterized by oceanic features; the East China Sea with a wide continental shelf, enormous terrestrial discharges and open margins to the West Pacific, is featured by strong cross-shelf materials transport; the Yellow Sea is featured by the confluence of cold and warm waters; and the Bohai Sea is a shallow semiclosed gulf with strong impacts of human activities. Three large rivers, the Yangtze River, Yellow River, and Pearl River, flow into the East China Sea, the Bohai Sea, and the South China Sea, respectively. The Kuroshio Current at the outer margin of the Chinese continental shelf is one of the two major western boundary currents of the world oceans and its strength and position directly affect the regional climate of China. These characteristics make the China Seas a typical case of marginal seas to study carbon storage and fluxes. This paper systematically analyzes the literature data on the carbon pools and fluxes of the Bohai Sea,Yellow Sea, East China Sea, and South China Sea, including different interfaces(land-sea, sea-air, sediment-water, and marginal sea-open ocean) and different ecosystems(mangroves, wetland, seagrass beds, macroalgae mariculture, coral reefs, euphotic zones, and water column). Among the four seas, the Bohai Sea and South China Sea are acting as CO_2 sources, releasing about0.22 and 13.86–33.60 Tg C yr^(-1) into the atmosphere, respectively, whereas the Yellow Sea and East China Sea are acting as carbon sinks, absorbing about 1.15 and 6.92–23.30 Tg C yr^(-1) of atmospheric CO_2, respectively. Overall, if only the CO_2 exchange at the sea-air interface is considered, the Chinese marginal seas appear to be a source of atmospheric CO_2, with a net release of 6.01–9.33 Tg C yr^(-1), mainly from the inputs of rivers and adjacent oceans. The riverine dissolved inorganic carbon (DIC) input into the Bohai Sea and Yellow Sea, East China Sea, and South China Sea are 5.04, 14.60, and 40.14 Tg C yr^(-1),respectively. The DIC input from adjacent oceans is as high as 144.81 Tg C yr^(-1), significantly exceeding the carbon released from the seas to the atmosphere. In terms of output, the depositional fluxes of organic carbon in the Bohai Sea, Yellow Sea, East China Sea, and South China Sea are 2.00, 3.60, 7.40, and 5.92 Tg C yr^(-1), respectively. The fluxes of organic carbon from the East China Sea and South China Sea to the adjacent oceans are 15.25–36.70 and 43.93 Tg C yr^(-1), respectively. The annual carbon storage of mangroves, wetlands, and seagrass in Chinese coastal waters is 0.36–1.75 Tg C yr^(-1), with a dissolved organic carbon(DOC) output from seagrass beds of up to 0.59 Tg C yr^(-1). Removable organic carbon flux by Chinese macroalgae mariculture account for 0.68 Tg C yr^(-1) and the associated POC depositional and DOC releasing fluxes are 0.14 and 0.82 Tg C yr^(-1), respectively. Thus, in total, the annual output of organic carbon, which is mainly DOC, in the China Seas is 81.72–104.56 Tg C yr^(-1). The DOC efflux from the East China Sea to the adjacent oceans is 15.00–35.00 Tg C yr^(-1). The DOC efflux from the South China Sea is 31.39 Tg C yr^(-1). Although the marginal China Seas seem to be a source of atmospheric CO_2 based on the CO_2 flux at the sea-air interface, the combined effects of the riverine input in the area, oceanic input, depositional export,and microbial carbon pump(DOC conversion and output) indicate that the China Seas represent an important carbon storage area. 展开更多
关键词 China Seas "Source" or "sink" of C02 Carbon pool Carbon flux Biological pump Microbial carbon pump
原文传递
Characterization of Strain Pseudomonas sp. Q1 in Microbial Fuel Cell for Treatment of Quinoline-Contaminated Water 被引量:3
16
作者 ZHANG Cui-Ping CHEN Shah-Shan +2 位作者 LIU Guang-Li ZHANG Ren-Duo XIE Jian 《Pedosphere》 SCIE CAS CSCD 2012年第4期528-535,共8页
To find new strain in the microbial fuel cell (MFC) for quinoline removal from wastewater and soil, a facultative anaerobic bacterium strain was isolated from the anode of MFC, utilizing quinoline as the carbon source... To find new strain in the microbial fuel cell (MFC) for quinoline removal from wastewater and soil, a facultative anaerobic bacterium strain was isolated from the anode of MFC, utilizing quinoline as the carbon source and electron donor. Based on the 16S rRNA sequence analysis, the bacterium strain was Gram-negative and identified as Pseudomonas sp. Q1 according to its morphology and physiochemical properties. The strain was inoculated into a double-chambered MFC using various quinoline concentrations (0, 50, 75, 86, 100, 150, 200 and 300 mg L-1 ) combining with 300 mg L-1 glucose as the fuel. Results showed that electricity was generated from the MFC, in which quinoline was degraded simultaneously. The values of Coulombic efficiency (CE) increased with the increase of quinoline concentrations from 0 to 100 mg L-1 then decreased with the increase of quinoline concentration from 100 to 300 mg L-1 , and the maximum CE 36.7% was obtained at the quinoline concentration of 100 mg L-1 . The cyclic voltammetry analysis suggested that the mechanism of electron transfer was through excreting mediators produced by the strain Q1. The MFC should be a potential method for the treatment of quinoline-contaminated water and soil. 展开更多
关键词 bacterium strain BIODEGRADATION electron transfer power generation GLUCOSE
原文传递
Electricity generation and brewery wastewater treatment from sequential anode-cathode microbial fuel cell 被引量:6
17
作者 Qing WEN Ying WU +2 位作者 Li-xin ZHAO Qian SUN Fan-ying KONG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2010年第2期87-93,共7页
A sequential anode-cathode double-chamber microbial fuel cell (MFC), in which the effluent of anode chamber was used as a continuous feed for an aerated cathode chamber, was constructed in this experiment to investi... A sequential anode-cathode double-chamber microbial fuel cell (MFC), in which the effluent of anode chamber was used as a continuous feed for an aerated cathode chamber, was constructed in this experiment to investigate the performance of brewery wastewater treatment in conjugation with electricity generation. Carbon fiber was used as anode and plain carbon felt with biofilm as cathode. When hydraulic retention time (HRT) was 14.7 h, a relatively high chemical oxygen demand (COD) removal efficiency of 91.7%-95.7% was achieved under long-term stable operation. The MFC displayed an open circuit voltage of 0.434 V and a maximum power density of 830 mW/m^3 at an external resistance of 300 0. To estimate the electrochemical performance of the MFC, electrochemical measurements were carried out and showed that polarization resistance of anode was the major limiting factor in the MFC. Since a high COD removal efficiency was achieved, we conclude that the sequential anode-cathode MFC constructed with bio-cathode in this experiment could provide a new approach for brewery wastewater treatment. 展开更多
关键词 Brewery wastewater Chemical oxygen demand (COD) removal efficiency Electrochemical impedance soectroscopy Microbial fuel cell (MFC)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部