In this work, a thermodynamic model is developed for prediction of structure H hydrate formation. The model combines the Peng-Robinson equation of state for the vapor, liquid and aqueous phases with the extended Ng-Ro...In this work, a thermodynamic model is developed for prediction of structure H hydrate formation. The model combines the Peng-Robinson equation of state for the vapor, liquid and aqueous phases with the extended Ng-Robinson hydrate model for gas hydrate formation of all three structures. The parameters of 14 structure- H hydrate formers are determined based on the experimental data of structure-H hydrates in the literature. The expression of fugacity of water in the empty hydrate phase is correlated for calculating structure-H hydrate formation conditions in the absence of free water. The model is tested by predicting hydrate formation conditions of a number of structure-H hydrate forming systems which are in good agreement with the experimental data. The proposed model is also applied to the prediction of hydrate formation conditions for various reservoir fluids such as natural gas and gas condensate.展开更多
Healthy sporophytes of two gametophyte mutants of Laminariajaponica with different heat resistances: kelp 901 (901, with comparatively stronger heat-resistance) and Rongcheng No. I (RC, sensitive to heat stress),...Healthy sporophytes of two gametophyte mutants of Laminariajaponica with different heat resistances: kelp 901 (901, with comparatively stronger heat-resistance) and Rongcheng No. I (RC, sensitive to heat stress), were respectively collected during October to December 2002 from Yantai and Rongcheng Sea Farm in the Shandong Peninsula of China. The contents of some biochemical materials and antioxidant capacity were analyzed under controlled laboratory conditions to identify if there is any relation between the overall antioxidant capacity and the heat-resistance in L. japonica and to understand possible mechanism of heat-resistance. Results show that: (1) the overall antioxidant capacity in healthy sporophyte of 901, such as vitamin E, polyphenol, and ascorbic acid contents and the enzymatic activity of SOD, POD, CAT, Gpx, PPO, and PAL, were not always higher than that of RC under controlled laboratory conditions, and no significance (P〉0.05) was shown in total antioxidant capacity (T-AOC) in 901 and RC. Result suggested that the difference in antioxidant capacity was not a decisive factor for different heat-resistances in L. japonica; (2) the simultaneous assay on isozymes was carried out using vertical polyacrylamide gel electrophoresis (PAGE). Considerable differences in peroxide (PRX), malate dehydrogenase (MDH), malic enzyme (ME), polyphenol oxidase (PPO) and glutamate dehydrogenase (GDH) were obtained in 901 and RC from either the band number, relative mobility (Rf), or staining intensity, and ME could be used as an indicator to distinguish healthy sporophyte of 901 and RC under controlled laboratory conditions.展开更多
Parabolic trough collectors (PTCs) are employed for a variety of applications including steam generation and hot water generation. This paper deals with the experimental results and an economic analysis of a new fib...Parabolic trough collectors (PTCs) are employed for a variety of applications including steam generation and hot water generation. This paper deals with the experimental results and an economic analysis of a new fibre reinforced plastic (FRP) based solar PTC with an embedded electronic controlled tracking system designed and developed for hot water generation in a restaurant in Madurai, India. The new collector performance has been tested according to ASHRAE Standard 93 (1986). The performance of a new PTC hot water generation system with a well mixed hot water storage tank is investigated by a series of extensive tests over ten months period. The average maximum storage tank water temperature observed was 74.91℃, when no energy is withdrawn from the tank to the load during the collection period. The total cost of the new economic FRP based solar PTC for hot water generation with an embedded electronic controlled tracking system is Rs. 25000 (US$ 573) only. In the present work, life cycle savings (LCS) method is employed for a detailed economic analysis of the PTC system. A computer program is used as a tool for the economic analysis. The present worth of life cycle solar savings is evaluated for the new solar PTC hot water generation system that replaces an existing electric water heating system in the restaurant and attains a value of Rs. 23171.66 after 15 years, which is a significant saving. The LCS method and the MATLAB computer simulation program presented in this paper can be used to estimate the LCS of other renewable energy systems.展开更多
Thailand rice husk ash was used to synthesize zeolite by hydrothermal treatment. Raw rice husk ash material and zeolitic products were characterized in terms of specific surface area (BET method), morphological anal...Thailand rice husk ash was used to synthesize zeolite by hydrothermal treatment. Raw rice husk ash material and zeolitic products were characterized in terms of specific surface area (BET method), morphological analysis (SEM), mineralogical composition (XRD) and CEC (cation exchange capacity). LOI (Loss of ignition) of rice husk ash was also evaluated. Result indicated that the rice husk ash sample from Roi-Et Green power plant in the Northeastern of Thailand with combustion temperature of 650 ℃ has a high content of SiO2 (above 90 wt.%). Zeolite-X from rice husk ash with high content of Si was successfully synthesized using hydrothermal treatment. The zeolitic material synthesized with the optimal condition possessed a maximum value of CEC of 503 meq/100g, and it has potentiality to be used as ion exchangers.展开更多
Biochar is charcoal produced at comparatively high temperature and used as an agricultural amendment, which also sequesters carbon. Most of the research on biochar manufacture in the United States has either focused o...Biochar is charcoal produced at comparatively high temperature and used as an agricultural amendment, which also sequesters carbon. Most of the research on biochar manufacture in the United States has either focused on large-scale continuous systems with multiple products or small batch systems with biochar as the only product. At James Madison University in Harrisonburg, Virginia, we have worked on a batch system to make high quality biochar while capturing the heat for use either as a backup system for hot water heating, or to heat a greenhouse in winter. The system is now in its third iteration. In the first, we used a small intramural grant to experiment with low cost material using a minimalist design. While the unit captured some heat, operation of the design was smoky and hazardous to handle. The second design, funded by a larger intramural research grant, captured considerable heat, made 8-10 kg of biochar per burn and captured up to 250 MJ per batch of biochar made, but remained smoky. The third generation pyrolysis unit was constructed on Avalon Acres Farm in Broadway, Virginia, funded by a 25 × 25 grant through James Madison University (JMU). This unit makes the same amount of biochar, with less smoke, and sends the captured heat to a storage tank to help heat a greenhouse and home on the site. Our average efficiency of heat transfer is 12.5% of the total heat value of the starting woody biomass, a number we believe can at least double.展开更多
Densities of aqueous solutions of eight amino acids, glycine, L-alanine, L-valine, L-isoleucine, L-serine, L-threonine, L-arginine and L-phenylalanine, are measured as a function of amino acid concentration from 293.1...Densities of aqueous solutions of eight amino acids, glycine, L-alanine, L-valine, L-isoleucine, L-serine, L-threonine, L-arginine and L-phenylalanine, are measured as a function of amino acid concentration from 293.15K to 333.15K. These data are used to calculate the apparent molar volume Vφ and infinite dilution apparent molar volume Vφo (partial molar volume). Data of five amino acids are used to correlate partial molar volume Vφo usinggroup contribution method to estimate the contributions of the zwitterionic end groups (NH3+,COO-) and CH2 group, OH group, CNHNHNH2 group and C6H5(phenyl) group of amino acids. The results show that Vφo values for all kinds of groups of amino acids studied increase with increase of temperature except those for CH2 group, which are almost constant within the studied temperature range. Data of other amino acids, L-valine, L-isoleucine and L-threonine, are chosen for comparison with the predicted partial molar volume Vφo using the group additivity parameters obtained. The results confirm that this group additivity method has excellent predictive utility.展开更多
We studied the depth distribution of periphyton,growing on inundated dead trees in Kenyir Lake,Malaysia in June 1995.The algal floral composition and structure manifested changes down the depth gradient in terms of sp...We studied the depth distribution of periphyton,growing on inundated dead trees in Kenyir Lake,Malaysia in June 1995.The algal floral composition and structure manifested changes down the depth gradient in terms of species richness,abundance,diversity and cell density.In regression analysis,all these algal attributes were negatively correlated with the depth gradients at P<0.05.In terms of species richness,the bacillariophytes showed dominance over the cyanophytes and chlorophytes;whereas with respect to standing crop,the cyanophytes showed dominance over the bacillariophytes and chlorophytes.The chlorophyll a was higher at the mid and bottom-depths than the surface-depth in both the downstream and upstream sites,which showed that vertical productivity or biomass accumulation was greater in low light irradiance.The product-moment correlation analysis showed that conductivity,turbidity,dissolved oxygen,reactive phosphate and ammonium-nitrogen were highly correlated with the algal assemblage data.However,photosynthetic active radiation(PAR) showed poor correlation with the community data.These observations have cast some light on the autoecological characteristics,habitat preferences and environmental responses of tropical periphytic communities.展开更多
Based on the mechanism of the effect of hydration on the heat stability of lysozyme and the theory of water molecule clusters, the effect of structure-changed water on heat stability of lysozyme has been studied. The ...Based on the mechanism of the effect of hydration on the heat stability of lysozyme and the theory of water molecule clusters, the effect of structure-changed water on heat stability of lysozyme has been studied. The results obtained by differential scanning calorimetry (DSC) showed that the thermal denaturation temperature of lysozyme had been elevated 8.47 K through hydration of lysozyme with processed water whose structure had been changed so it was called "structured water" compared to ordinary water. The reason is that structured water changed the dipole moment of water molecules and easily formed cyclic water hexamer or cage-like water hexamer, so that the interacting force of maintaining three-dimensional conformation of lysozyme could be reinforced.展开更多
Microbial biomass carbon (MBC), a small fraction of soil organic matter, has a rapid turnover rate and is a reservoir of labile nutrients. The water-extractable carbon pools provide a fairly good estimate of labile C ...Microbial biomass carbon (MBC), a small fraction of soil organic matter, has a rapid turnover rate and is a reservoir of labile nutrients. The water-extractable carbon pools provide a fairly good estimate of labile C present in soil and can be easily quantified. Changes in soil MBC and water-extractable organic carbon pools were studied in a 14-year long-term experiment in plots of rice-wheat rotation irrigated with canal water (CW), sodic water (SW, 10-12.5 mmol c L-1 residual sodium carbonate), and SW amended with gypsum with or without application of organic amendments including farmyard manure (FYM), green manure (GM), and wheat straw (WS). Irrigation with SW increased soil exchangeable sodium percentage by more than 13 times compared to irrigation with CW. Sodic water irrigation significantly decreased hot water-extractable organic carbon (HWOC) from 330 to 286 mg kg-1 soil and cold water-extractable organic carbon (CWOC) from 53 to 22 mg kg-1 soil in the top 0-7.5 cm soil layer. In the lower soil layer (7.5-15 cm), reduction in HWOC was not significant. Application of gypsum alone resulted in a decrease in HWOC in the SW plots, whereas an increase was recorded in the SW plots with application of both gypsum and organic amendments in both the soil layers. Nevertheless, application of gypsum and organic amendments increased the mean CWOC as compared with application of gypsum alone. CWOC was significantly correlated with MBC but did not truly reflect the changes in MBC in the treatments with gypsum and organic amendments applied. For the treatments without organic amendments, HWOC was negatively correlated with MBC (r = 0.57*) in the 0-7.5 cm soil layer, whereas for the treatments with organic amendments, both were positively correlated. Irrigation with SW significantly reduced the rice yield by 3 t ha-1 and the yield of rice and wheat by 5 t ha-1 as compared to irrigation with canal water. Application of amendments significantly increased rice and wheat yields. Both the rice yield and the yield of rice and wheat were significantly correlated with MBC (r = 0.49**-0.56**, n = 60). HWOC did not exhibit any relation with the crop yields under the treatments without organic amendments; however, CWOC showed a positive but weak correlation with the crop yields. Therefore, we found that under sodic water irrigation, HWOC or CWOC in the soils was not related to MBC.展开更多
Forming a stable anti-corrosion surface layer on magnesium(Mg)and its alloys has become a major challenge in developing a desirable degradable medical implant in bone.In this study,a porous MgO layer was first formed ...Forming a stable anti-corrosion surface layer on magnesium(Mg)and its alloys has become a major challenge in developing a desirable degradable medical implant in bone.In this study,a porous MgO layer was first formed on Mg by plasma electrolytic oxidation(PEO),and then a Mg-Al layered double hydroxide(LDH)layer was prepared to seal the porous structure of the PEO layer(LDH-2h and LDH-12h)via hydrothermal treatment.The bilayer structure composite coating,which can effectively resist the penetration of surrounding media,is similar to plain Chinese tiles.The in vitro results revealed that compared with other coatings,the LDH-12h composite coating can reduce the release of Mg ions and induce a milder change in pH when immersed in phosphate-buffered saline(PBS).In vitro rat bone marrow stem cell(rBMSC)culture suggested that the LDH-12h composite coating is favorable for cell activity,proliferation and could improve the osteogenic activity of rBMSCs.A subcutaneous implantation test revealed that the as-prepared sample showed enhanced corrosion resistance and histocompatibility in vivo,especially in the LDH-12h group.Moreover,LDH-12h had the lowest rate of degradation and the closest combination with the new bone after being inserted into a rat femur for 12 weeks with no major organ dysfunction.In summary,the asprepared PEO/Mg-Al LDH composite coating is able to improve the corrosion resistance and biocompatibility of Mg and to enhance osteogenic activity in vivo,suggesting its promising prospects for orthopedic applications.展开更多
In this study, biochars from rice straw (Oryza sativa L.) were prepared at 200-600 ℃ by oxygen-limited pyrolysis to investigate the changes in properties of rice straw biochars produced at different temperatures, a...In this study, biochars from rice straw (Oryza sativa L.) were prepared at 200-600 ℃ by oxygen-limited pyrolysis to investigate the changes in properties of rice straw biochars produced at different temperatures, and to examine the adsorption capacities of the biochars for a heavy metal, copper(II) (Cu(II)), and an organic insecticide of cyromazine, as well as to further reveal the adsorption mechanisms. The results obtained with batch experiments showed that the amount of Cu(II) adsorbed varied with the pyrolysis temperatures of rice straw biochar. The biochar produced at 400 ~C had the largest adsorption capacity for Cu(II) (0.37 mol kg-1) among the biochars, with the non-electrostatic adsorption as the main adsorption mechanism. The highest adsorption capacity for cyromazine (156.42 g kg-1) was found in the rice straw biochar produced at 600 ℃, and cyromazine adsorption was exclusively predominated by surface adsorption. An obvious competitive adsorption was found between 5 mmol L-1 Cu(II) and 2 g L-1 cyromazine when they were in the binary solute system. Biochar may be used to remediate heavy metal- and organic insecticide-contaminated water, while the pyrolysis temperature of feedstocks for producing biochar should be considered for the restoration of multi-contamination.展开更多
An economical idea was developed to synthesize fluorescent carbon quantum dots (CQDs) directly fl-om the refluxing extraction of orange pericarp via a hydrothermal technique. Hydrothermal temperatures and times were...An economical idea was developed to synthesize fluorescent carbon quantum dots (CQDs) directly fl-om the refluxing extraction of orange pericarp via a hydrothermal technique. Hydrothermal temperatures and times were adjusted to control the particle sizes and the quantum yields of the obtained CQDs. The as-prepared carbon quantum dots showed narrow particle size distribution, good water solubility, and acceptable fluorescence lifetimes. Due to their high stability, these obtained carbon quantum dots have great application potential in nano-biotechnology. Furthermore, carbon spheres with uniform morphology and size can be easily obtained as the reaction byproducts of this green synthesis process.展开更多
基金Supported by the National Natural Science Foundation of China (No. 20490207, No. 20176028, No. 90210020) and Huo Ying-dong Education Foundation (No. 81064)
文摘In this work, a thermodynamic model is developed for prediction of structure H hydrate formation. The model combines the Peng-Robinson equation of state for the vapor, liquid and aqueous phases with the extended Ng-Robinson hydrate model for gas hydrate formation of all three structures. The parameters of 14 structure- H hydrate formers are determined based on the experimental data of structure-H hydrates in the literature. The expression of fugacity of water in the empty hydrate phase is correlated for calculating structure-H hydrate formation conditions in the absence of free water. The model is tested by predicting hydrate formation conditions of a number of structure-H hydrate forming systems which are in good agreement with the experimental data. The proposed model is also applied to the prediction of hydrate formation conditions for various reservoir fluids such as natural gas and gas condensate.
基金Supported by the National Hi-Tech Research Program (863 Program, No. 2004AA639770)the National Natural Science Foundation of China (No.30270258)Program for New Century Excellent Talents in University (NCET-05-0597).
文摘Healthy sporophytes of two gametophyte mutants of Laminariajaponica with different heat resistances: kelp 901 (901, with comparatively stronger heat-resistance) and Rongcheng No. I (RC, sensitive to heat stress), were respectively collected during October to December 2002 from Yantai and Rongcheng Sea Farm in the Shandong Peninsula of China. The contents of some biochemical materials and antioxidant capacity were analyzed under controlled laboratory conditions to identify if there is any relation between the overall antioxidant capacity and the heat-resistance in L. japonica and to understand possible mechanism of heat-resistance. Results show that: (1) the overall antioxidant capacity in healthy sporophyte of 901, such as vitamin E, polyphenol, and ascorbic acid contents and the enzymatic activity of SOD, POD, CAT, Gpx, PPO, and PAL, were not always higher than that of RC under controlled laboratory conditions, and no significance (P〉0.05) was shown in total antioxidant capacity (T-AOC) in 901 and RC. Result suggested that the difference in antioxidant capacity was not a decisive factor for different heat-resistances in L. japonica; (2) the simultaneous assay on isozymes was carried out using vertical polyacrylamide gel electrophoresis (PAGE). Considerable differences in peroxide (PRX), malate dehydrogenase (MDH), malic enzyme (ME), polyphenol oxidase (PPO) and glutamate dehydrogenase (GDH) were obtained in 901 and RC from either the band number, relative mobility (Rf), or staining intensity, and ME could be used as an indicator to distinguish healthy sporophyte of 901 and RC under controlled laboratory conditions.
文摘Parabolic trough collectors (PTCs) are employed for a variety of applications including steam generation and hot water generation. This paper deals with the experimental results and an economic analysis of a new fibre reinforced plastic (FRP) based solar PTC with an embedded electronic controlled tracking system designed and developed for hot water generation in a restaurant in Madurai, India. The new collector performance has been tested according to ASHRAE Standard 93 (1986). The performance of a new PTC hot water generation system with a well mixed hot water storage tank is investigated by a series of extensive tests over ten months period. The average maximum storage tank water temperature observed was 74.91℃, when no energy is withdrawn from the tank to the load during the collection period. The total cost of the new economic FRP based solar PTC for hot water generation with an embedded electronic controlled tracking system is Rs. 25000 (US$ 573) only. In the present work, life cycle savings (LCS) method is employed for a detailed economic analysis of the PTC system. A computer program is used as a tool for the economic analysis. The present worth of life cycle solar savings is evaluated for the new solar PTC hot water generation system that replaces an existing electric water heating system in the restaurant and attains a value of Rs. 23171.66 after 15 years, which is a significant saving. The LCS method and the MATLAB computer simulation program presented in this paper can be used to estimate the LCS of other renewable energy systems.
文摘Thailand rice husk ash was used to synthesize zeolite by hydrothermal treatment. Raw rice husk ash material and zeolitic products were characterized in terms of specific surface area (BET method), morphological analysis (SEM), mineralogical composition (XRD) and CEC (cation exchange capacity). LOI (Loss of ignition) of rice husk ash was also evaluated. Result indicated that the rice husk ash sample from Roi-Et Green power plant in the Northeastern of Thailand with combustion temperature of 650 ℃ has a high content of SiO2 (above 90 wt.%). Zeolite-X from rice husk ash with high content of Si was successfully synthesized using hydrothermal treatment. The zeolitic material synthesized with the optimal condition possessed a maximum value of CEC of 503 meq/100g, and it has potentiality to be used as ion exchangers.
文摘Biochar is charcoal produced at comparatively high temperature and used as an agricultural amendment, which also sequesters carbon. Most of the research on biochar manufacture in the United States has either focused on large-scale continuous systems with multiple products or small batch systems with biochar as the only product. At James Madison University in Harrisonburg, Virginia, we have worked on a batch system to make high quality biochar while capturing the heat for use either as a backup system for hot water heating, or to heat a greenhouse in winter. The system is now in its third iteration. In the first, we used a small intramural grant to experiment with low cost material using a minimalist design. While the unit captured some heat, operation of the design was smoky and hazardous to handle. The second design, funded by a larger intramural research grant, captured considerable heat, made 8-10 kg of biochar per burn and captured up to 250 MJ per batch of biochar made, but remained smoky. The third generation pyrolysis unit was constructed on Avalon Acres Farm in Broadway, Virginia, funded by a 25 × 25 grant through James Madison University (JMU). This unit makes the same amount of biochar, with less smoke, and sends the captured heat to a storage tank to help heat a greenhouse and home on the site. Our average efficiency of heat transfer is 12.5% of the total heat value of the starting woody biomass, a number we believe can at least double.
基金the Educational Department Doctor Foundation of China (No. 2000005608).
文摘Densities of aqueous solutions of eight amino acids, glycine, L-alanine, L-valine, L-isoleucine, L-serine, L-threonine, L-arginine and L-phenylalanine, are measured as a function of amino acid concentration from 293.15K to 333.15K. These data are used to calculate the apparent molar volume Vφ and infinite dilution apparent molar volume Vφo (partial molar volume). Data of five amino acids are used to correlate partial molar volume Vφo usinggroup contribution method to estimate the contributions of the zwitterionic end groups (NH3+,COO-) and CH2 group, OH group, CNHNHNH2 group and C6H5(phenyl) group of amino acids. The results show that Vφo values for all kinds of groups of amino acids studied increase with increase of temperature except those for CH2 group, which are almost constant within the studied temperature range. Data of other amino acids, L-valine, L-isoleucine and L-threonine, are chosen for comparison with the predicted partial molar volume Vφo using the group additivity parameters obtained. The results confirm that this group additivity method has excellent predictive utility.
基金Supported by the Goverment of Malaysia,Intensified Research in Priority Areas(IRPA Project)(No.50258-J3)
文摘We studied the depth distribution of periphyton,growing on inundated dead trees in Kenyir Lake,Malaysia in June 1995.The algal floral composition and structure manifested changes down the depth gradient in terms of species richness,abundance,diversity and cell density.In regression analysis,all these algal attributes were negatively correlated with the depth gradients at P<0.05.In terms of species richness,the bacillariophytes showed dominance over the cyanophytes and chlorophytes;whereas with respect to standing crop,the cyanophytes showed dominance over the bacillariophytes and chlorophytes.The chlorophyll a was higher at the mid and bottom-depths than the surface-depth in both the downstream and upstream sites,which showed that vertical productivity or biomass accumulation was greater in low light irradiance.The product-moment correlation analysis showed that conductivity,turbidity,dissolved oxygen,reactive phosphate and ammonium-nitrogen were highly correlated with the algal assemblage data.However,photosynthetic active radiation(PAR) showed poor correlation with the community data.These observations have cast some light on the autoecological characteristics,habitat preferences and environmental responses of tropical periphytic communities.
文摘Based on the mechanism of the effect of hydration on the heat stability of lysozyme and the theory of water molecule clusters, the effect of structure-changed water on heat stability of lysozyme has been studied. The results obtained by differential scanning calorimetry (DSC) showed that the thermal denaturation temperature of lysozyme had been elevated 8.47 K through hydration of lysozyme with processed water whose structure had been changed so it was called "structured water" compared to ordinary water. The reason is that structured water changed the dipole moment of water molecules and easily formed cyclic water hexamer or cage-like water hexamer, so that the interacting force of maintaining three-dimensional conformation of lysozyme could be reinforced.
基金supported by Punjab Agricultural University, India
文摘Microbial biomass carbon (MBC), a small fraction of soil organic matter, has a rapid turnover rate and is a reservoir of labile nutrients. The water-extractable carbon pools provide a fairly good estimate of labile C present in soil and can be easily quantified. Changes in soil MBC and water-extractable organic carbon pools were studied in a 14-year long-term experiment in plots of rice-wheat rotation irrigated with canal water (CW), sodic water (SW, 10-12.5 mmol c L-1 residual sodium carbonate), and SW amended with gypsum with or without application of organic amendments including farmyard manure (FYM), green manure (GM), and wheat straw (WS). Irrigation with SW increased soil exchangeable sodium percentage by more than 13 times compared to irrigation with CW. Sodic water irrigation significantly decreased hot water-extractable organic carbon (HWOC) from 330 to 286 mg kg-1 soil and cold water-extractable organic carbon (CWOC) from 53 to 22 mg kg-1 soil in the top 0-7.5 cm soil layer. In the lower soil layer (7.5-15 cm), reduction in HWOC was not significant. Application of gypsum alone resulted in a decrease in HWOC in the SW plots, whereas an increase was recorded in the SW plots with application of both gypsum and organic amendments in both the soil layers. Nevertheless, application of gypsum and organic amendments increased the mean CWOC as compared with application of gypsum alone. CWOC was significantly correlated with MBC but did not truly reflect the changes in MBC in the treatments with gypsum and organic amendments applied. For the treatments without organic amendments, HWOC was negatively correlated with MBC (r = 0.57*) in the 0-7.5 cm soil layer, whereas for the treatments with organic amendments, both were positively correlated. Irrigation with SW significantly reduced the rice yield by 3 t ha-1 and the yield of rice and wheat by 5 t ha-1 as compared to irrigation with canal water. Application of amendments significantly increased rice and wheat yields. Both the rice yield and the yield of rice and wheat were significantly correlated with MBC (r = 0.49**-0.56**, n = 60). HWOC did not exhibit any relation with the crop yields under the treatments without organic amendments; however, CWOC showed a positive but weak correlation with the crop yields. Therefore, we found that under sodic water irrigation, HWOC or CWOC in the soils was not related to MBC.
基金the National Natural Science Foundation of China(81901048,81921002,81620108006 and 31771044)Shanghai Committee of Science and Technology,China(18410760600)the International Partnership Program of Chinese Academy of Sciences(GJHZ1850)。
文摘Forming a stable anti-corrosion surface layer on magnesium(Mg)and its alloys has become a major challenge in developing a desirable degradable medical implant in bone.In this study,a porous MgO layer was first formed on Mg by plasma electrolytic oxidation(PEO),and then a Mg-Al layered double hydroxide(LDH)layer was prepared to seal the porous structure of the PEO layer(LDH-2h and LDH-12h)via hydrothermal treatment.The bilayer structure composite coating,which can effectively resist the penetration of surrounding media,is similar to plain Chinese tiles.The in vitro results revealed that compared with other coatings,the LDH-12h composite coating can reduce the release of Mg ions and induce a milder change in pH when immersed in phosphate-buffered saline(PBS).In vitro rat bone marrow stem cell(rBMSC)culture suggested that the LDH-12h composite coating is favorable for cell activity,proliferation and could improve the osteogenic activity of rBMSCs.A subcutaneous implantation test revealed that the as-prepared sample showed enhanced corrosion resistance and histocompatibility in vivo,especially in the LDH-12h group.Moreover,LDH-12h had the lowest rate of degradation and the closest combination with the new bone after being inserted into a rat femur for 12 weeks with no major organ dysfunction.In summary,the asprepared PEO/Mg-Al LDH composite coating is able to improve the corrosion resistance and biocompatibility of Mg and to enhance osteogenic activity in vivo,suggesting its promising prospects for orthopedic applications.
基金supported by the National Natural Science Foundation of China (Nos.41371245 and 41230855)the National Key Technology R&D Program of China (No.2012BAJ24B06)
文摘In this study, biochars from rice straw (Oryza sativa L.) were prepared at 200-600 ℃ by oxygen-limited pyrolysis to investigate the changes in properties of rice straw biochars produced at different temperatures, and to examine the adsorption capacities of the biochars for a heavy metal, copper(II) (Cu(II)), and an organic insecticide of cyromazine, as well as to further reveal the adsorption mechanisms. The results obtained with batch experiments showed that the amount of Cu(II) adsorbed varied with the pyrolysis temperatures of rice straw biochar. The biochar produced at 400 ~C had the largest adsorption capacity for Cu(II) (0.37 mol kg-1) among the biochars, with the non-electrostatic adsorption as the main adsorption mechanism. The highest adsorption capacity for cyromazine (156.42 g kg-1) was found in the rice straw biochar produced at 600 ℃, and cyromazine adsorption was exclusively predominated by surface adsorption. An obvious competitive adsorption was found between 5 mmol L-1 Cu(II) and 2 g L-1 cyromazine when they were in the binary solute system. Biochar may be used to remediate heavy metal- and organic insecticide-contaminated water, while the pyrolysis temperature of feedstocks for producing biochar should be considered for the restoration of multi-contamination.
基金supported by the National Basic Research Program of China(2013CB922102,2011CB935800)the National Natural Science Foundation of China(21071076,51172106,21021062)
文摘An economical idea was developed to synthesize fluorescent carbon quantum dots (CQDs) directly fl-om the refluxing extraction of orange pericarp via a hydrothermal technique. Hydrothermal temperatures and times were adjusted to control the particle sizes and the quantum yields of the obtained CQDs. The as-prepared carbon quantum dots showed narrow particle size distribution, good water solubility, and acceptable fluorescence lifetimes. Due to their high stability, these obtained carbon quantum dots have great application potential in nano-biotechnology. Furthermore, carbon spheres with uniform morphology and size can be easily obtained as the reaction byproducts of this green synthesis process.