Our field experiments showed that the cultivation of pearl mussels formed a new biocoene composed of filamentous algae, protozoa, porifera and coelenterate. It effectively reduced nitrogen, phosphorus, chemical oxygen...Our field experiments showed that the cultivation of pearl mussels formed a new biocoene composed of filamentous algae, protozoa, porifera and coelenterate. It effectively reduced nitrogen, phosphorus, chemical oxygen demand and biochemical oxygen demand in the water by 67.3%, 73.2%, 38.1% and 15.5%, respectively, during May to September 1998 when the water eutrophication was developing. This could control water eutrophication and produce pearls, shellfish meat and shells. This is an economical and effective way to control water eutrophication by using the ultra strong filtering capability of freshwater pearl mussels.展开更多
Air pollution is harm and discomfort to human or other living organisms, it also causes damage to the environment. The aim of this project was to study the effect of air pollutions on structure and pollen grains devel...Air pollution is harm and discomfort to human or other living organisms, it also causes damage to the environment. The aim of this project was to study the effect of air pollutions on structure and pollen grains development in Chenopodium album. Anthers of Chenopodium album L. were collected at different stages of development from control (less polluted) and polluted areas (mainly SO2, NO2, CO and APM). Structure and development of pollen grains were studied and compared. The effects of pollution on pollen structure was investigated under Light and Scanning electron microscopy and the results showed that when pollen grains were exposed to polluted air they became abnormality in form and covered with large amounts of pollutants compared to control ones. Pollen abnormalities were seen as irregularity, shrinkage, thinning and breakage of the exine. Cellular material release was induced also. The data presented suggest that prolonged exposures of plants to air pollution may cause different biological effects at the cellular tissue and organ levels.展开更多
文摘Our field experiments showed that the cultivation of pearl mussels formed a new biocoene composed of filamentous algae, protozoa, porifera and coelenterate. It effectively reduced nitrogen, phosphorus, chemical oxygen demand and biochemical oxygen demand in the water by 67.3%, 73.2%, 38.1% and 15.5%, respectively, during May to September 1998 when the water eutrophication was developing. This could control water eutrophication and produce pearls, shellfish meat and shells. This is an economical and effective way to control water eutrophication by using the ultra strong filtering capability of freshwater pearl mussels.
文摘Air pollution is harm and discomfort to human or other living organisms, it also causes damage to the environment. The aim of this project was to study the effect of air pollutions on structure and pollen grains development in Chenopodium album. Anthers of Chenopodium album L. were collected at different stages of development from control (less polluted) and polluted areas (mainly SO2, NO2, CO and APM). Structure and development of pollen grains were studied and compared. The effects of pollution on pollen structure was investigated under Light and Scanning electron microscopy and the results showed that when pollen grains were exposed to polluted air they became abnormality in form and covered with large amounts of pollutants compared to control ones. Pollen abnormalities were seen as irregularity, shrinkage, thinning and breakage of the exine. Cellular material release was induced also. The data presented suggest that prolonged exposures of plants to air pollution may cause different biological effects at the cellular tissue and organ levels.