Although the quantification and valuation of ecosystem services have been studied for a long time, few studies have specifi- cally focused on the quantification of tradeoffs between ecosystem services and tradeoff hot...Although the quantification and valuation of ecosystem services have been studied for a long time, few studies have specifi- cally focused on the quantification of tradeoffs between ecosystem services and tradeoff hotspots, Based on previous studies of ecosys- tem service assessment, we proposed a feasible method to analyze the tradeoffs between ecosystem services, including determination of their relationship, quantification of tradeoffs, and identification of tradeoff hotspots. Potential influencing factors were then further ana- lyzed. The Yanhe Basin in the Loess Plateau was selected as an example to demonstrate the application process. Firstly, the amounts of net primary production (NPP) and water yield (WY) in 2000 and 2008 were estimated by using biophysical models, Secondly, correla- tion analysis was used to indicate the tradeoffs between NPP and WY. Thirdly, tradeoff index (TINpp/wy) was established to quantify the extent of tradeoffs between NPP and WY, and the average value of TINpp/wy is 24.4 g/(mm·m2) for the Yanhe Basin between 2000 and 2008. Finally, the tradeoff hotspots were identified. The results indicated that the area of lowest tradeoff index concentrated in the mid- dle part of the Yanhe Basin and marginal areas of the southern basin. Map overlapping was used for preliminary analysis to seek poten- tial influencing factors, and the results showed that shrub was the best suited for growing in the Yanhe Basin, but also was a potential irtfluencing factor for formulatiort of the tradeoff hotspots. The concept of tradeoff index could also be used to quantify the degree of synergy between different ecosystem services. The method to identify the tradeoff hotspots could help us to narrow the scope of study area for further research on the relationship among ecosystem services and concentrate on the potential factors for formation of tradeoff between ecosystem services, enhance the capacity to maintain the sustainability of ecosystem.展开更多
With the growing recognition to myriad forms of current and future threats in the mountain agriculture systems,there is a pressing need to holistically understand the vulnerability of mountain agriculture communities....With the growing recognition to myriad forms of current and future threats in the mountain agriculture systems,there is a pressing need to holistically understand the vulnerability of mountain agriculture communities.The study aims to assess the biophysical and social vulnerability of agriculture communities using an indicator-based approach for the state of Uttarakhand,India.A total of 14 indicators were used to capture biophysical vulnerability and 22 for social vulnerability profiles of15285 villages.Vulnerability analysis was done at village level with weights assigned to each indicator using Analytical Hierarchical Process(AHP).The results of the study highlight the presence of very high biophysical vulnerability(0.82 ± 0.10) and high social vulnerability(0.65 ± 0.15) within the state.Based on the results,it was found that incidences of high biophysical vulnerability coincide with presence of intensified agriculture land and absence of dense forest.Higher social vulnerability scores were found in villages with an absence of local institutions(like Self Helping Groups(SHGs)),negligible infrastructure facilities and higher occupational dependence on agriculture.A contrast was observed in the vulnerability scores of villages present in the three different altitudinal zones in the study area,indicating respective vulnerability generating conditions existing in these three zones.Biophysical vulnerability was recorded to be highest in the villages falling in the lower zone and lowest in the upper zone villages;whereas,social vulnerability was found to be highest in the middle zone villages and lowest in lower zone villages.Our study aids policy makers in identifying areas for intervention to expedite agriculture adaptation planning in the state.Additionally,the adaptation programmes in the region need to be more context-specific to accommodate the differential altitudinal vulnerability profiles.展开更多
Immunoassay technology is an analytical method with high sensitivity and specificity; it provides a technique to assay materials which cannot be measured by other methods, or are difficult to detect. It plays a very i...Immunoassay technology is an analytical method with high sensitivity and specificity; it provides a technique to assay materials which cannot be measured by other methods, or are difficult to detect. It plays a very important role in biological sample pre-treatment, therapeutic drug monitoring and drug determination, and is one of the important means for in vivo drug analyses. This paper reviews immunoassays commonly used in bioanalysis, including immunoextraction and immunodepletion for pretreatment of biological samples, conventional immunoassay methods and new immunoassay technologies for determination of target drugs.展开更多
基金Under the auspices of National Natural Sciences Foundation of China(No.41230745)Major Program of High Resolution Earth Observation System(No.30-Y30B13-9003-14/16-02)
文摘Although the quantification and valuation of ecosystem services have been studied for a long time, few studies have specifi- cally focused on the quantification of tradeoffs between ecosystem services and tradeoff hotspots, Based on previous studies of ecosys- tem service assessment, we proposed a feasible method to analyze the tradeoffs between ecosystem services, including determination of their relationship, quantification of tradeoffs, and identification of tradeoff hotspots. Potential influencing factors were then further ana- lyzed. The Yanhe Basin in the Loess Plateau was selected as an example to demonstrate the application process. Firstly, the amounts of net primary production (NPP) and water yield (WY) in 2000 and 2008 were estimated by using biophysical models, Secondly, correla- tion analysis was used to indicate the tradeoffs between NPP and WY. Thirdly, tradeoff index (TINpp/wy) was established to quantify the extent of tradeoffs between NPP and WY, and the average value of TINpp/wy is 24.4 g/(mm·m2) for the Yanhe Basin between 2000 and 2008. Finally, the tradeoff hotspots were identified. The results indicated that the area of lowest tradeoff index concentrated in the mid- dle part of the Yanhe Basin and marginal areas of the southern basin. Map overlapping was used for preliminary analysis to seek poten- tial influencing factors, and the results showed that shrub was the best suited for growing in the Yanhe Basin, but also was a potential irtfluencing factor for formulatiort of the tradeoff hotspots. The concept of tradeoff index could also be used to quantify the degree of synergy between different ecosystem services. The method to identify the tradeoff hotspots could help us to narrow the scope of study area for further research on the relationship among ecosystem services and concentrate on the potential factors for formation of tradeoff between ecosystem services, enhance the capacity to maintain the sustainability of ecosystem.
基金the support of the Ministry of Environment & Forests(MoEF),Government of India (GoI) (Project Serial Number:R&D/NNRMS/2/2013-14)
文摘With the growing recognition to myriad forms of current and future threats in the mountain agriculture systems,there is a pressing need to holistically understand the vulnerability of mountain agriculture communities.The study aims to assess the biophysical and social vulnerability of agriculture communities using an indicator-based approach for the state of Uttarakhand,India.A total of 14 indicators were used to capture biophysical vulnerability and 22 for social vulnerability profiles of15285 villages.Vulnerability analysis was done at village level with weights assigned to each indicator using Analytical Hierarchical Process(AHP).The results of the study highlight the presence of very high biophysical vulnerability(0.82 ± 0.10) and high social vulnerability(0.65 ± 0.15) within the state.Based on the results,it was found that incidences of high biophysical vulnerability coincide with presence of intensified agriculture land and absence of dense forest.Higher social vulnerability scores were found in villages with an absence of local institutions(like Self Helping Groups(SHGs)),negligible infrastructure facilities and higher occupational dependence on agriculture.A contrast was observed in the vulnerability scores of villages present in the three different altitudinal zones in the study area,indicating respective vulnerability generating conditions existing in these three zones.Biophysical vulnerability was recorded to be highest in the villages falling in the lower zone and lowest in the upper zone villages;whereas,social vulnerability was found to be highest in the middle zone villages and lowest in lower zone villages.Our study aids policy makers in identifying areas for intervention to expedite agriculture adaptation planning in the state.Additionally,the adaptation programmes in the region need to be more context-specific to accommodate the differential altitudinal vulnerability profiles.
基金National Natural Science Foundation of China(Gr ant No.81102499)Hunan Science and Technology Project(Grant No.2011SK3261)
文摘Immunoassay technology is an analytical method with high sensitivity and specificity; it provides a technique to assay materials which cannot be measured by other methods, or are difficult to detect. It plays a very important role in biological sample pre-treatment, therapeutic drug monitoring and drug determination, and is one of the important means for in vivo drug analyses. This paper reviews immunoassays commonly used in bioanalysis, including immunoextraction and immunodepletion for pretreatment of biological samples, conventional immunoassay methods and new immunoassay technologies for determination of target drugs.