Biodegradation parameters and kinetic characteristics for pre-treating waste strains of Klebsiella pneu-moniae were studied in laboratory scale with an insulated reactor by an innovative technique,autothermal thermo-p...Biodegradation parameters and kinetic characteristics for pre-treating waste strains of Klebsiella pneu-moniae were studied in laboratory scale with an insulated reactor by an innovative technique,autothermal thermo-philic aerobic digestion(ATAD) . Based on an Arrhenius-type equation,an empirical model was developed to corre-late the removal of total suspended solid(TSS) with the initial TSS concentration,influent reaction temperature,aeration rate and stirring rate. The reaction temperatures of the ATAD system could be raised from the ambient temperatures of 25 °C to a maximum temperature of 65 °C. The exponentials for the initial TSS concentration,aeration rate and stirring rate were 1.579,-0.8175 and-0.6549,respectively,and the apparent activation energy was 6.8774 kJ·mol-1. The correlation coefficient for the pre-exponential factor was 0.9223. The TSS removal effi-ciency predicted by the model was validated with an actual test,showing a maximum relative deviation of 10.79%. The new model has a good practicability.展开更多
We argue that genuine biological autonomy, or described at human level as free will, requires taking into account quantum vacuum processes in the context of biological teleology. One faces at least three basic problem...We argue that genuine biological autonomy, or described at human level as free will, requires taking into account quantum vacuum processes in the context of biological teleology. One faces at least three basic problems of genuine biological autonomy: (1) if biological autonomy is not physical, where does it come from? (2) Is there a room for biological causes? And (3) how to obtain a workable model of biological teleology? It is shown here that the solution of all these three problems is related to the quantum vacuum. We present a short review of how this basic aspect of the fundamentals of quantum theory, although it had not been addressed for nearly 100 years, actually it was suggested by Bohr, Heisenberg, and others. Realizing that the quantum mechanical measurement problem associated with the "collapse" of the wave function is related, in the Copenhagen Interpretation of quantum mechanics, to a process between self-consciousness and the external physical environment, we are extending the issue for an explanation of the different processes occurring between living organisms and their internal environment. Definitions of genuine biological autonomy, biological aim, and biological spontaneity are presented. We propose to improve the popular two-stage model of decisions with a biological model suitable to obtain a deeper look at the nature of the mind-body problem. In the newly emerging picture biological autonomy emerges as a new, fundamental and inevitable element of the scientific worldview.展开更多
River estuarine environment plays a key role in the cycling of biological and chemical parameters and a significant region for the transaction of freshwater and seawater. In the present study, a first attempt has been...River estuarine environment plays a key role in the cycling of biological and chemical parameters and a significant region for the transaction of freshwater and seawater. In the present study, a first attempt has been made towards the development of a coupled three-dimensional hydrodynamic circulation model with four compartment (nitrate, phytoplankton, zooplankton and detritus) biogeochemical model in the Hooghly estuary (21 °36′-22° 16′1 and 87°42'-88°15′E) to simulate the varying effect of plankton biomass with the heavy input of anthropogenic litter from industrial effluents of Haldia port which is effecting the chemical and biological processes that control the plankton dynamics in the estuary. In-situ observational data for physico-chemical and biological parameters are collected from Calcutta University during 2010 are assimilated using multiscale OA (objective analysis) for different seasons and incorporated in ROMS (Regional Ocean Modeling System) to develop a high resolution (0.5 km x 0.5 kin) biogeochemical model. Recent analysis on physico-chemical parameters of the estuary is done as it is one of the largest estuaries in India and is the habitat for vast biodiversity. Influence of high nitrate (above 34 μg/L) and phosphate (5.22 μg/L) is predominant whereas DO (dissolved oxygen) is low (4.07 mg/L) in the Haldi River mouth which is sliding the productivity (less than 1 mg/L) and also affects water quality.展开更多
MacArthur and Wilson's equilibrium theory is one of the most influential theories in ecology.Although evolution on islands is to be important to island biodiversity,speciation has not been well integrated into isl...MacArthur and Wilson's equilibrium theory is one of the most influential theories in ecology.Although evolution on islands is to be important to island biodiversity,speciation has not been well integrated into island biogeography models.By incorporating speciation and factors influencing it into the MacArthur-Wilson model,we propose a generalized model unifying ecological and evolutionary processes and island features.Intra-island speciation may play an important role in both island species richness and endemism,and the contribution of speciation to local species diversity may eventually be greater than that of immigration under certain conditions.Those conditions are related to the per species speciation rate,per species extinction rate,and island features,and they are independent of immigration rate.The model predicts that large islands will have a high,though not the highest,proportional endemism when other parameters are fixed.Based on the generalized model,changes in species richness and endemism on an oceanic island over time were predicted to be similar to empirical observations.Our model provides an ideal starting point for re-evaluating the role of speciation and re-analyzing available data on island species diversity,especially those biased by the MacArthur-Wilson model.展开更多
The generic phantom bursting model proposed by Bertram et al.can evoke complex bursting oscillations in collaboration with two generic slow variables with different time scales.Two models with the phantom bursting mec...The generic phantom bursting model proposed by Bertram et al.can evoke complex bursting oscillations in collaboration with two generic slow variables with different time scales.Two models with the phantom bursting mechanism are suggested,when these two generic slow variables are provided with some specific biological significances by combining slowly varying intracellular Ca2+concentration of the Chay-Keizer electrical bursting model with two different glycolytic oscillations,respectively.Also,complex dynamic behaviors of different compound bursting occurring in these two models are comprehensively surveyed by two fast/slow analyses for a moderately and a slower slow variable,respectively.展开更多
基金Supported by the Doctoral Foundation of Northeast Dianli University (BSJXM-200814)Foundations of Bureau of Jilin Province (2008424)
文摘Biodegradation parameters and kinetic characteristics for pre-treating waste strains of Klebsiella pneu-moniae were studied in laboratory scale with an insulated reactor by an innovative technique,autothermal thermo-philic aerobic digestion(ATAD) . Based on an Arrhenius-type equation,an empirical model was developed to corre-late the removal of total suspended solid(TSS) with the initial TSS concentration,influent reaction temperature,aeration rate and stirring rate. The reaction temperatures of the ATAD system could be raised from the ambient temperatures of 25 °C to a maximum temperature of 65 °C. The exponentials for the initial TSS concentration,aeration rate and stirring rate were 1.579,-0.8175 and-0.6549,respectively,and the apparent activation energy was 6.8774 kJ·mol-1. The correlation coefficient for the pre-exponential factor was 0.9223. The TSS removal effi-ciency predicted by the model was validated with an actual test,showing a maximum relative deviation of 10.79%. The new model has a good practicability.
文摘We argue that genuine biological autonomy, or described at human level as free will, requires taking into account quantum vacuum processes in the context of biological teleology. One faces at least three basic problems of genuine biological autonomy: (1) if biological autonomy is not physical, where does it come from? (2) Is there a room for biological causes? And (3) how to obtain a workable model of biological teleology? It is shown here that the solution of all these three problems is related to the quantum vacuum. We present a short review of how this basic aspect of the fundamentals of quantum theory, although it had not been addressed for nearly 100 years, actually it was suggested by Bohr, Heisenberg, and others. Realizing that the quantum mechanical measurement problem associated with the "collapse" of the wave function is related, in the Copenhagen Interpretation of quantum mechanics, to a process between self-consciousness and the external physical environment, we are extending the issue for an explanation of the different processes occurring between living organisms and their internal environment. Definitions of genuine biological autonomy, biological aim, and biological spontaneity are presented. We propose to improve the popular two-stage model of decisions with a biological model suitable to obtain a deeper look at the nature of the mind-body problem. In the newly emerging picture biological autonomy emerges as a new, fundamental and inevitable element of the scientific worldview.
文摘River estuarine environment plays a key role in the cycling of biological and chemical parameters and a significant region for the transaction of freshwater and seawater. In the present study, a first attempt has been made towards the development of a coupled three-dimensional hydrodynamic circulation model with four compartment (nitrate, phytoplankton, zooplankton and detritus) biogeochemical model in the Hooghly estuary (21 °36′-22° 16′1 and 87°42'-88°15′E) to simulate the varying effect of plankton biomass with the heavy input of anthropogenic litter from industrial effluents of Haldia port which is effecting the chemical and biological processes that control the plankton dynamics in the estuary. In-situ observational data for physico-chemical and biological parameters are collected from Calcutta University during 2010 are assimilated using multiscale OA (objective analysis) for different seasons and incorporated in ROMS (Regional Ocean Modeling System) to develop a high resolution (0.5 km x 0.5 kin) biogeochemical model. Recent analysis on physico-chemical parameters of the estuary is done as it is one of the largest estuaries in India and is the habitat for vast biodiversity. Influence of high nitrate (above 34 μg/L) and phosphate (5.22 μg/L) is predominant whereas DO (dissolved oxygen) is low (4.07 mg/L) in the Haldi River mouth which is sliding the productivity (less than 1 mg/L) and also affects water quality.
基金supported by the National Natural Science Foundation of China (Grant No. 30870361)the National High Technology Research and Development Program of China (Grant No. 2007AA09Z432)the "211 Project" of East China Normal University
文摘MacArthur and Wilson's equilibrium theory is one of the most influential theories in ecology.Although evolution on islands is to be important to island biodiversity,speciation has not been well integrated into island biogeography models.By incorporating speciation and factors influencing it into the MacArthur-Wilson model,we propose a generalized model unifying ecological and evolutionary processes and island features.Intra-island speciation may play an important role in both island species richness and endemism,and the contribution of speciation to local species diversity may eventually be greater than that of immigration under certain conditions.Those conditions are related to the per species speciation rate,per species extinction rate,and island features,and they are independent of immigration rate.The model predicts that large islands will have a high,though not the highest,proportional endemism when other parameters are fixed.Based on the generalized model,changes in species richness and endemism on an oceanic island over time were predicted to be similar to empirical observations.Our model provides an ideal starting point for re-evaluating the role of speciation and re-analyzing available data on island species diversity,especially those biased by the MacArthur-Wilson model.
基金supported by the National Natural Science Foundation of China(Grant Nos.1137201711072013 and 11202083)
文摘The generic phantom bursting model proposed by Bertram et al.can evoke complex bursting oscillations in collaboration with two generic slow variables with different time scales.Two models with the phantom bursting mechanism are suggested,when these two generic slow variables are provided with some specific biological significances by combining slowly varying intracellular Ca2+concentration of the Chay-Keizer electrical bursting model with two different glycolytic oscillations,respectively.Also,complex dynamic behaviors of different compound bursting occurring in these two models are comprehensively surveyed by two fast/slow analyses for a moderately and a slower slow variable,respectively.