Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the ac...Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the activated sludge process, despite their long operating times. However, population increases have created a demand for more efficient means of wastewater treatment, Fluidization has been demonstrated to in- crease the efficiency of many processes in chemical and biochemical engineering, but it has not been widely used in large-scale wastewater treatment. At the University of Western Ontario, the circulating fluidized-bed bioreactor (CFBBR) was developed for treating wastewater. In this process, carrier particles develop a biofilm composed of bacteria and other microbes. The excellent mixing and mass transfer characteristics inherent to fluidization make this process very effective at treating both municipal and industrial wastewater. Studies of lab- and pilot-scale systems showed that the CFBBR can remove over 90% of the influent organic matter and 80% of the nitrogen, and produces less than one-third as much biological sludge as the activated sludge process. Due to its high efficiency, the CFBBR can also be used to treat wastewaters with high organic solid concentrations, which are more difficult to treat with conventional methods because they require longer residence times; the CFBBR can also be used to reduce the system size and footprint. In addition, it is much better at handling and recovering from dynamic loadings (i.e., varying influent volume and concentrations) than current systems. Overall, the CFBBR has been shown to be a very effective means of treating wastewa- ter, and to be capable of treating larger volumes of wastewater using a smaller reactor volume and a shorter residence time. In addition, its compact design holds potential for more geographically localized and isolat- ed wastewater treatment systems.展开更多
The concept of SBCR was put forward to treat sauce wastewater. Further study showed that adding appropriate amount of calcium chloride to SBR can improve the quality of effluent. The removal rate of COD and color was ...The concept of SBCR was put forward to treat sauce wastewater. Further study showed that adding appropriate amount of calcium chloride to SBR can improve the quality of effluent. The removal rate of COD and color was 84% and 80%, 36%, 96% higher than those of traditional SBR respectively. The results of continuous experiments and biophase observing showed that calcium chloride accumulation increased the sludge production slightly while the sludge dewatering characteristic was improved.展开更多
This study was conducted to verify and discuss the denitrifying dephosphatation under different levels of nitrate concentration and retention time of anoxic/aerobic process in a Sequencing Batch Reactor (SBR). The res...This study was conducted to verify and discuss the denitrifying dephosphatation under different levels of nitrate concentration and retention time of anoxic/aerobic process in a Sequencing Batch Reactor (SBR). The results of tests demonstrated that there were two kinds of phosphorus-accumulating organisms (PAOs) in the biological excess phosphorus removal (BEPR) system. One was non-DNPAOs that could only use oxygen as terminal electron acceptors, the other was denitrifying PAOs (DNPAOs) that could use both nitrate and oxygen as terminal electron acceptors. Phosphorus uptake efficiency could be attained under anoxic period ranging from 28.7%-96.7% in an anaerobic/anoxic/aerobic system. Experimental results showed that nitrate concentration and retention time of anoxic/aerobic process were the key factors affecting the course of denitrifying dephosphatation.展开更多
In this paper, a theoretical-economic study was carried out based on the operation and construction of different types of equipments that use solar energy to carry out the distillation process. The conclusions drawn f...In this paper, a theoretical-economic study was carried out based on the operation and construction of different types of equipments that use solar energy to carry out the distillation process. The conclusions drawn from the analysis aimed to determine what is necessary for the optimal design of an experimental distillation module that allows bioethanol with specific features to be obtained, for the area of Tehuantepec in Mexico. This study took the experiments carried out by various authors and extracted information relevant to the selection of the parameters and variables of the proposed distiller according to their efficiency and construction costs.展开更多
The term "extreme environments" describes the conditions that deviate from what mesophilic cells can tolerate. These condi- tions are "extreme" in the eye of mankind, but they may be suitable or even essential liv...The term "extreme environments" describes the conditions that deviate from what mesophilic cells can tolerate. These condi- tions are "extreme" in the eye of mankind, but they may be suitable or even essential living conditions for most microorgan- isms. Hypertherrnophilic microorganisms form a branch at the root of the phylogenetic tree, indicating that early life originated from extreme environments similar to that of modern deep-sea hydrothermal vents, which are characterized by high-tempera- ture and oxygen-limiting conditions. During the inevitable cooling and gradual oxidation process on Earth, microorganisms developed similar mechanisms of adaptation. By studying modem extremophiles, we may be able to decode the mysterious history of their genomic evolution and to reconstruct e~,rly life. Because life itself is a process of energy uptake to maintain a dissipative structure that is not in thermodynamic equilibrium, the energy metabolism of microorganisms determines the path- way of evolution, the structure of an ecosystem, and the physiology of cells. "Following energy" is an essential approach to understand the boundaries of life and to search for life beyond Earth.展开更多
文摘Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the activated sludge process, despite their long operating times. However, population increases have created a demand for more efficient means of wastewater treatment, Fluidization has been demonstrated to in- crease the efficiency of many processes in chemical and biochemical engineering, but it has not been widely used in large-scale wastewater treatment. At the University of Western Ontario, the circulating fluidized-bed bioreactor (CFBBR) was developed for treating wastewater. In this process, carrier particles develop a biofilm composed of bacteria and other microbes. The excellent mixing and mass transfer characteristics inherent to fluidization make this process very effective at treating both municipal and industrial wastewater. Studies of lab- and pilot-scale systems showed that the CFBBR can remove over 90% of the influent organic matter and 80% of the nitrogen, and produces less than one-third as much biological sludge as the activated sludge process. Due to its high efficiency, the CFBBR can also be used to treat wastewaters with high organic solid concentrations, which are more difficult to treat with conventional methods because they require longer residence times; the CFBBR can also be used to reduce the system size and footprint. In addition, it is much better at handling and recovering from dynamic loadings (i.e., varying influent volume and concentrations) than current systems. Overall, the CFBBR has been shown to be a very effective means of treating wastewa- ter, and to be capable of treating larger volumes of wastewater using a smaller reactor volume and a shorter residence time. In addition, its compact design holds potential for more geographically localized and isolat- ed wastewater treatment systems.
文摘The concept of SBCR was put forward to treat sauce wastewater. Further study showed that adding appropriate amount of calcium chloride to SBR can improve the quality of effluent. The removal rate of COD and color was 84% and 80%, 36%, 96% higher than those of traditional SBR respectively. The results of continuous experiments and biophase observing showed that calcium chloride accumulation increased the sludge production slightly while the sludge dewatering characteristic was improved.
基金Sponsored by the National Natural Science Foundation of China(Grant No50008014)
文摘This study was conducted to verify and discuss the denitrifying dephosphatation under different levels of nitrate concentration and retention time of anoxic/aerobic process in a Sequencing Batch Reactor (SBR). The results of tests demonstrated that there were two kinds of phosphorus-accumulating organisms (PAOs) in the biological excess phosphorus removal (BEPR) system. One was non-DNPAOs that could only use oxygen as terminal electron acceptors, the other was denitrifying PAOs (DNPAOs) that could use both nitrate and oxygen as terminal electron acceptors. Phosphorus uptake efficiency could be attained under anoxic period ranging from 28.7%-96.7% in an anaerobic/anoxic/aerobic system. Experimental results showed that nitrate concentration and retention time of anoxic/aerobic process were the key factors affecting the course of denitrifying dephosphatation.
文摘In this paper, a theoretical-economic study was carried out based on the operation and construction of different types of equipments that use solar energy to carry out the distillation process. The conclusions drawn from the analysis aimed to determine what is necessary for the optimal design of an experimental distillation module that allows bioethanol with specific features to be obtained, for the area of Tehuantepec in Mexico. This study took the experiments carried out by various authors and extracted information relevant to the selection of the parameters and variables of the proposed distiller according to their efficiency and construction costs.
基金supported by National Natural Science Foundation of China (Grant No. 31290232)National High-Tech Program (Grant No. 2012AA092103-2)National Basic Research Program of China (Grant No. 2011CB808800)
文摘The term "extreme environments" describes the conditions that deviate from what mesophilic cells can tolerate. These condi- tions are "extreme" in the eye of mankind, but they may be suitable or even essential living conditions for most microorgan- isms. Hypertherrnophilic microorganisms form a branch at the root of the phylogenetic tree, indicating that early life originated from extreme environments similar to that of modern deep-sea hydrothermal vents, which are characterized by high-tempera- ture and oxygen-limiting conditions. During the inevitable cooling and gradual oxidation process on Earth, microorganisms developed similar mechanisms of adaptation. By studying modem extremophiles, we may be able to decode the mysterious history of their genomic evolution and to reconstruct e~,rly life. Because life itself is a process of energy uptake to maintain a dissipative structure that is not in thermodynamic equilibrium, the energy metabolism of microorganisms determines the path- way of evolution, the structure of an ecosystem, and the physiology of cells. "Following energy" is an essential approach to understand the boundaries of life and to search for life beyond Earth.