A new type of vascular stent is designed for treating stenotic vessels. Aiming at overcoming the shortcomings of existing equipment and technology for preparing a bioabsorbable vascular stent (BVS), a new method whi...A new type of vascular stent is designed for treating stenotic vessels. Aiming at overcoming the shortcomings of existing equipment and technology for preparing a bioabsorbable vascular stent (BVS), a new method which combines 3D bio-printing and electrospinning to prepare the composite bioabsorbable vascular stent (CBVS) is proposed. The inner layer of the CBVS can be obtained through 3D bio- printing using poly-p-dioxanone (PPDO). The thin nanofiber film that serves as the outer layer can be built through electrospinning using mixtures of chitosan-PVA (poly (vinyl alcohol)). Tests of mechanical properties show that the stent prepared through 3D bio-printing combined with electrospinning is better than that prepared through 3D bio- printing alone. Cells cultivated on the CBVS adhere and proliferate better due to the natural, biological chitosan in the outer layer. The proposed complex process and method can provide a good basis for preparing a controllable drug-carrying vascular stent. Overall, the CBVS can be a good candidate for treating stenotic vessels.展开更多
The objective of this paper is to design a based on composite membrane with certain mechanical porous polyvinyl alcohol (PVA) strength and biocompatibilities serving as tissue regenerative scaffolds. PVA-glycosamino...The objective of this paper is to design a based on composite membrane with certain mechanical porous polyvinyl alcohol (PVA) strength and biocompatibilities serving as tissue regenerative scaffolds. PVA-glycosaminoglycan (GAG)-type I collagen (COL) composite membrane was fabricated by PVA with different molecular weight (Mw) and alcoholysis degree (AD) being blended with certain amounts of GAG and COL and dried at 38~C for 24 h. The water content of the composite membranes were from 61.9% to 95.1% and swelling ratio ranged from 123.6% to 621.7%. Scanning electron micro- scope (SEM) analysis proved that PVA-GAG-COL composite membrane has porous and homogenous structure. Biocompatibility test results showed that the composite membrane was nontoxic, which could promote adhesion and proliferation of fibroblasts on the com- posite membrane. In conclusion, PVA-GAG-COL composite membrane with high water content and swelling ratio, suitable mechanical strength and good biocompatibility, has potential in tissue engineering and regenerative medicine.展开更多
基金The National Natural Science Foundation of China(No.51475281,51375292)the National Natural Science Foundation for Young Scholar of China(No.51105239)
文摘A new type of vascular stent is designed for treating stenotic vessels. Aiming at overcoming the shortcomings of existing equipment and technology for preparing a bioabsorbable vascular stent (BVS), a new method which combines 3D bio-printing and electrospinning to prepare the composite bioabsorbable vascular stent (CBVS) is proposed. The inner layer of the CBVS can be obtained through 3D bio- printing using poly-p-dioxanone (PPDO). The thin nanofiber film that serves as the outer layer can be built through electrospinning using mixtures of chitosan-PVA (poly (vinyl alcohol)). Tests of mechanical properties show that the stent prepared through 3D bio-printing combined with electrospinning is better than that prepared through 3D bio- printing alone. Cells cultivated on the CBVS adhere and proliferate better due to the natural, biological chitosan in the outer layer. The proposed complex process and method can provide a good basis for preparing a controllable drug-carrying vascular stent. Overall, the CBVS can be a good candidate for treating stenotic vessels.
基金National Natural Science Foundation of China,grant number:51070853Guangzhou Technology Plans,grant number:2010B103315 and 2010J-E041
文摘The objective of this paper is to design a based on composite membrane with certain mechanical porous polyvinyl alcohol (PVA) strength and biocompatibilities serving as tissue regenerative scaffolds. PVA-glycosaminoglycan (GAG)-type I collagen (COL) composite membrane was fabricated by PVA with different molecular weight (Mw) and alcoholysis degree (AD) being blended with certain amounts of GAG and COL and dried at 38~C for 24 h. The water content of the composite membranes were from 61.9% to 95.1% and swelling ratio ranged from 123.6% to 621.7%. Scanning electron micro- scope (SEM) analysis proved that PVA-GAG-COL composite membrane has porous and homogenous structure. Biocompatibility test results showed that the composite membrane was nontoxic, which could promote adhesion and proliferation of fibroblasts on the com- posite membrane. In conclusion, PVA-GAG-COL composite membrane with high water content and swelling ratio, suitable mechanical strength and good biocompatibility, has potential in tissue engineering and regenerative medicine.