The existing methods of detecting pesticide residue include gas chromatography, high performance liquid chromatography, gas chromatograph-mass, liquid chromatograph-mass, capillary electrophoresis, radioimmunoassay, b...The existing methods of detecting pesticide residue include gas chromatography, high performance liquid chromatography, gas chromatograph-mass, liquid chromatograph-mass, capillary electrophoresis, radioimmunoassay, biosensor and rapid detection on the spot. The paper analyzes the comparison of gas chromatography and liquid chromatogram detecting pesticide residue, for achieving the development tendency and the future goal of analyzing pesticide residue.展开更多
Because of their easy tunability in structure,porosity,and micro-environment,metal-organic frameworks(MOFs)have recently attracted numerous attentions in various fields.The detection of ascorbic acid(AA),dopamine(DA),...Because of their easy tunability in structure,porosity,and micro-environment,metal-organic frameworks(MOFs)have recently attracted numerous attentions in various fields.The detection of ascorbic acid(AA),dopamine(DA),and uric acid(UA)is of great significance not only in biomedicine and neurochemistry but also in disease diagnosis and pathology research.Herein,a series of bimetallic-organic frameworks,MIL-125(Ti-Fe)-x%NH_(2)(x=0,25,50,75,and 100),was successfully synthesized.MIL-125(Ti-Fe)-x%NH_(2)family was employed as electrochemical sensors for the detection of AA,DA,and UA,and MIL-125(Ti-Fe)-100%NH_(2)exhibited the most promising performance with 50%carbon black doping in 0.1 mol·L^(-1)PBS(pH=7.10).In addition,the as-prepared MIL-125(Ti-Fe)-100%NH_(2)/GCE exhibited excellent anti-interference performance and good stability,which provided a promising platform for future utilization in real sample analysis.展开更多
A convenient aptamer-based competitive electrochemical biosensor for a small biomolecule,adenosine,was described. The sensing surface was fabricated by self-assembly of an aptamer/mercaptohexanol monolayer on a gold d...A convenient aptamer-based competitive electrochemical biosensor for a small biomolecule,adenosine,was described. The sensing surface was fabricated by self-assembly of an aptamer/mercaptohexanol monolayer on a gold disk electrode. The principle of this aptasensor is based on the competition between an adenosine target molecule and a ferrocene-conjugated signaling DNA strand for the aptamer binding site on the sensing surface. Due to the competitive nature of this assay,the electrochemical responses of the surface captured ferrocene are inversely proportional to log[adenosine] in the range from 0.05 to 3.2 μM,with a detection limit of 25 nM. Moreover,the aptasensor also shows high selectivity for adenosine. The proposed aptasensor thus holds great potential for the detection of other small biomolecules.展开更多
The paper reports a novel amperometric biosensor for catechol based on immobilization of a highly sensitive horseradish peroxidase by affinity interactions on metal chelate-functionalized agarose/carbon nanotubes comp...The paper reports a novel amperometric biosensor for catechol based on immobilization of a highly sensitive horseradish peroxidase by affinity interactions on metal chelate-functionalized agarose/carbon nanotubes composites. Metal chelate affinity takes advantage of the affinity of Ni2+ ions to bind strongly and reversibly to histidine or cysteine tails found on the surface of the horseradish peroxidase. Thus, enzymes with such residues in their molecules can be easily attached to functionalized aga- rose/carbon nanotubes composites support containing a nickel chelate. Linear sweep voltammograms and amperometry are used to study the proposed electrochemical biosensor. Catechol is determined by direct reduction of biocatalytically liberated quinone species at -0.05 V (vs. SCE). The effect ofpH, applied electrode potential and the concentration of H2O2 on the sensitivity of the biosensor has been investigated. The performance of the proposed biosensor is tested using four different phenolic compounds, showing very high sensitivity, in particular, the linearity of cateehol is observed from 2.0 × 10-8 to 1.05×10-5 M with a detection limit of 5.0×10-9 M.展开更多
An electrochemiluminescent (ECL) biosensor was constructed for selective assay of alanine aminotransferase (ALT) based on the enzymatically catalyzed oxidation of pyruvate by pyruvate oxidase (PYOD). The composite of ...An electrochemiluminescent (ECL) biosensor was constructed for selective assay of alanine aminotransferase (ALT) based on the enzymatically catalyzed oxidation of pyruvate by pyruvate oxidase (PYOD). The composite of potassium ferricyanide and carbon nanotube was adopted to pre-functionalize the basal platinum electrode while the potassium ferricyanide acted as the activator of PYOD. The ALT catalyzed the reaction of L-alanine and-ketoglutarate to produce pyruvate which could be further enzymatically oxidized by PYOD to yield H2O2 to intensify the ECL of luminol. The biosensor showed rapid response for real-time measurement of ALT in the linear concentration range from 0.00475 to 350 U/L (r = 0.993) with a relatively standard deviation of 2.5% (CALT = 47.5 U/L,n = 6). The biosensor was applied to assay the ALT in rat serum with average recovery of 90.5%.展开更多
文摘The existing methods of detecting pesticide residue include gas chromatography, high performance liquid chromatography, gas chromatograph-mass, liquid chromatograph-mass, capillary electrophoresis, radioimmunoassay, biosensor and rapid detection on the spot. The paper analyzes the comparison of gas chromatography and liquid chromatogram detecting pesticide residue, for achieving the development tendency and the future goal of analyzing pesticide residue.
基金the Natural Science Foundation of Science and Technology Department of Jilin Province(grant No.20210101131JC)the Fundamental Research Funds for the Central Universities(grant No.2412020FZ009 and 2412022ZD048)
文摘Because of their easy tunability in structure,porosity,and micro-environment,metal-organic frameworks(MOFs)have recently attracted numerous attentions in various fields.The detection of ascorbic acid(AA),dopamine(DA),and uric acid(UA)is of great significance not only in biomedicine and neurochemistry but also in disease diagnosis and pathology research.Herein,a series of bimetallic-organic frameworks,MIL-125(Ti-Fe)-x%NH_(2)(x=0,25,50,75,and 100),was successfully synthesized.MIL-125(Ti-Fe)-x%NH_(2)family was employed as electrochemical sensors for the detection of AA,DA,and UA,and MIL-125(Ti-Fe)-100%NH_(2)exhibited the most promising performance with 50%carbon black doping in 0.1 mol·L^(-1)PBS(pH=7.10).In addition,the as-prepared MIL-125(Ti-Fe)-100%NH_(2)/GCE exhibited excellent anti-interference performance and good stability,which provided a promising platform for future utilization in real sample analysis.
基金supported by the National Natural Science Foundation of China (20905062 & 20675064)research funds from Southwest Uni-versity (SWUB2008078 & XDJK2009B013)
文摘A convenient aptamer-based competitive electrochemical biosensor for a small biomolecule,adenosine,was described. The sensing surface was fabricated by self-assembly of an aptamer/mercaptohexanol monolayer on a gold disk electrode. The principle of this aptasensor is based on the competition between an adenosine target molecule and a ferrocene-conjugated signaling DNA strand for the aptamer binding site on the sensing surface. Due to the competitive nature of this assay,the electrochemical responses of the surface captured ferrocene are inversely proportional to log[adenosine] in the range from 0.05 to 3.2 μM,with a detection limit of 25 nM. Moreover,the aptasensor also shows high selectivity for adenosine. The proposed aptasensor thus holds great potential for the detection of other small biomolecules.
基金supported by the National Outstanding Youth Foundations of China (50725825)National Basic Research Program of China (2007CB310501 & 2011CB935704)+2 种基金National Natural Science Foundation of China (50908113)the Natural Science Foundation of Jiangxi Province (2008GZH0008)the Youth Foundation of Jiangxi Provincial Department of Education (GJJ09483)
文摘The paper reports a novel amperometric biosensor for catechol based on immobilization of a highly sensitive horseradish peroxidase by affinity interactions on metal chelate-functionalized agarose/carbon nanotubes composites. Metal chelate affinity takes advantage of the affinity of Ni2+ ions to bind strongly and reversibly to histidine or cysteine tails found on the surface of the horseradish peroxidase. Thus, enzymes with such residues in their molecules can be easily attached to functionalized aga- rose/carbon nanotubes composites support containing a nickel chelate. Linear sweep voltammograms and amperometry are used to study the proposed electrochemical biosensor. Catechol is determined by direct reduction of biocatalytically liberated quinone species at -0.05 V (vs. SCE). The effect ofpH, applied electrode potential and the concentration of H2O2 on the sensitivity of the biosensor has been investigated. The performance of the proposed biosensor is tested using four different phenolic compounds, showing very high sensitivity, in particular, the linearity of cateehol is observed from 2.0 × 10-8 to 1.05×10-5 M with a detection limit of 5.0×10-9 M.
基金supported by the National Natural Science Foundation of China (20275025 & 20675055)the Natural Science Fundation of Jiangsu Province (BK2009111)Technology Plan of Suzhou (SYJG0901)
文摘An electrochemiluminescent (ECL) biosensor was constructed for selective assay of alanine aminotransferase (ALT) based on the enzymatically catalyzed oxidation of pyruvate by pyruvate oxidase (PYOD). The composite of potassium ferricyanide and carbon nanotube was adopted to pre-functionalize the basal platinum electrode while the potassium ferricyanide acted as the activator of PYOD. The ALT catalyzed the reaction of L-alanine and-ketoglutarate to produce pyruvate which could be further enzymatically oxidized by PYOD to yield H2O2 to intensify the ECL of luminol. The biosensor showed rapid response for real-time measurement of ALT in the linear concentration range from 0.00475 to 350 U/L (r = 0.993) with a relatively standard deviation of 2.5% (CALT = 47.5 U/L,n = 6). The biosensor was applied to assay the ALT in rat serum with average recovery of 90.5%.