The mechanism of leaching chalcopyrite by Acidithiobacillus ferrooxidans (,4. ferrooxidans) in agar-simulated extracellular polymeric substances (EPS) media was investigated. The results indicate that bacterial EP...The mechanism of leaching chalcopyrite by Acidithiobacillus ferrooxidans (,4. ferrooxidans) in agar-simulated extracellular polymeric substances (EPS) media was investigated. The results indicate that bacterial EPS can release H+ and concentrate Fe3+; Fe2+ is movable between agar-simulated EPS phase and bulk solution phase, but it is difficult for Fe3+ to move due to its hydroxylation and EPS complex action; A. ferrooxidans first prefer Fe2+ as energy to metabolize compared with chalcopyrite, and a suitable simulated EPS environment for bacterial living is at about pH 1.8; the iron precipitates and jarosites formed by a lot of biologically oxidized Fe3 cover the simulated EPS easily and form an impermeable deposit acting as a limited barrier of ion transport that attenuates the aggressiveness of the bioleaching attack. The EPS layer blocked by iron precipitates or jarosites is responsible for the chalcopyrite passivation.展开更多
基金Project(2010CB630900) supported by the National Basic Research Program of ChinaProject(50621063) supported by the National Nature Science Foundation of China
文摘The mechanism of leaching chalcopyrite by Acidithiobacillus ferrooxidans (,4. ferrooxidans) in agar-simulated extracellular polymeric substances (EPS) media was investigated. The results indicate that bacterial EPS can release H+ and concentrate Fe3+; Fe2+ is movable between agar-simulated EPS phase and bulk solution phase, but it is difficult for Fe3+ to move due to its hydroxylation and EPS complex action; A. ferrooxidans first prefer Fe2+ as energy to metabolize compared with chalcopyrite, and a suitable simulated EPS environment for bacterial living is at about pH 1.8; the iron precipitates and jarosites formed by a lot of biologically oxidized Fe3 cover the simulated EPS easily and form an impermeable deposit acting as a limited barrier of ion transport that attenuates the aggressiveness of the bioleaching attack. The EPS layer blocked by iron precipitates or jarosites is responsible for the chalcopyrite passivation.