The electrochemical oxidation behavior of pyrite in bioleaching system of Acidthiobacillusferrooxidans was investigated by cyclic voltammetry (CV), polarization curve and electrochemical impedance spectroscopy (EIS...The electrochemical oxidation behavior of pyrite in bioleaching system of Acidthiobacillusferrooxidans was investigated by cyclic voltammetry (CV), polarization curve and electrochemical impedance spectroscopy (EIS). The results show that in the presence or absence of A. ferrooxidans, the oxidation reaction of pyrite is divided into two steps: the first reaction step involves the oxidation of pyrite to S, and the second reaction step is the oxidation of S to SO4^2-. The oxidation mechanism of pyrite is not changed in the presence of A. ferrooxidans, but the oxidation rate of pyrite is accelerated. With the extension of reaction time of A. ferrooxidan with pyrite, the polarization current density of pyrite increases and the breakdown potential at which the passive film dissolves decreases. The impedance in the presence ofA. ferrooxidans is obviously lower than that in the absence of A. ferrooxidans, further indicating that microorganism accelerates the corrosion process of pyrite.展开更多
Extracellular polymeric substances (EPS) produced by acidophilic bioleaching microorganisms play an important role in the production of acid mine drainage and metal sulfide bioleaching. EPS mediate the contact betwe...Extracellular polymeric substances (EPS) produced by acidophilic bioleaching microorganisms play an important role in the production of acid mine drainage and metal sulfide bioleaching. EPS mediate the contact between microbial cells and growth substrates, having a pivotal role in organic film formation and bacterium-substratum interactions. The production and chemical composition of EPS produced by seven bioleaching strains grown with different substrates were studied. Analysis of the EPS extracted from these strains indicated that the EPS consisted of carbohydrates, proteins and galacturonic acid. The contents of EPS, carbohydrates, proteins and galacturonic acid of EPS were largely related to the kind of strain used and culture condition. The results show that EPS productions of microbes grown with pyrite were significantly higher than those of microbes grown with sulfur or FeSO4·7H2O. The highest EPS production of the seven acidiphilic strains was (159.43±3.93) mg/g, which was produced by Leptospirillum ferriphilum CBCBSUCSU208015 when cultivated with pyrite.展开更多
Pyrolusite was added in the bioleaching process to enhance the bio-oxidation process. Bioleaching tests at different dosages of pyrolusite ore, pH and inoculation amounts of Acidithiobacillus ferrooxidans were studied...Pyrolusite was added in the bioleaching process to enhance the bio-oxidation process. Bioleaching tests at different dosages of pyrolusite ore, pH and inoculation amounts of Acidithiobacillus ferrooxidans were studied. The results showed that the time of the bio-oxidation process was decreased obviously and the arsenic leaching rate reached 94.4% after the bioleaching. The bio-oxidation of arsenopyrite and the effective extraction of manganese from pyrolusite were achieved by the bioleaching process. After bioleaching, the leaching rate of gold from the reaction residues reached 95.8% by cyanide leaching. In the bio-oxidation process, pyrolusite increased the redox potential of the solution to accelerate the bioleaching rate. The experiment showed that there were two reaction modes in the bioleaching process.展开更多
基金Project (2010CB630903) supported by the National Basic Research Program of China
文摘The electrochemical oxidation behavior of pyrite in bioleaching system of Acidthiobacillusferrooxidans was investigated by cyclic voltammetry (CV), polarization curve and electrochemical impedance spectroscopy (EIS). The results show that in the presence or absence of A. ferrooxidans, the oxidation reaction of pyrite is divided into two steps: the first reaction step involves the oxidation of pyrite to S, and the second reaction step is the oxidation of S to SO4^2-. The oxidation mechanism of pyrite is not changed in the presence of A. ferrooxidans, but the oxidation rate of pyrite is accelerated. With the extension of reaction time of A. ferrooxidan with pyrite, the polarization current density of pyrite increases and the breakdown potential at which the passive film dissolves decreases. The impedance in the presence ofA. ferrooxidans is obviously lower than that in the absence of A. ferrooxidans, further indicating that microorganism accelerates the corrosion process of pyrite.
文摘Extracellular polymeric substances (EPS) produced by acidophilic bioleaching microorganisms play an important role in the production of acid mine drainage and metal sulfide bioleaching. EPS mediate the contact between microbial cells and growth substrates, having a pivotal role in organic film formation and bacterium-substratum interactions. The production and chemical composition of EPS produced by seven bioleaching strains grown with different substrates were studied. Analysis of the EPS extracted from these strains indicated that the EPS consisted of carbohydrates, proteins and galacturonic acid. The contents of EPS, carbohydrates, proteins and galacturonic acid of EPS were largely related to the kind of strain used and culture condition. The results show that EPS productions of microbes grown with pyrite were significantly higher than those of microbes grown with sulfur or FeSO4·7H2O. The highest EPS production of the seven acidiphilic strains was (159.43±3.93) mg/g, which was produced by Leptospirillum ferriphilum CBCBSUCSU208015 when cultivated with pyrite.
基金Project(2015ZX07205-003)supported by the National Water Pollution Control and Treatment Science,ChinaProject(DY125-15-T-08)supported by China Ocean Mineral Resource R&D Association+1 种基金Project(2012BAB07B05)supported by the National Key Technology R&D Program of ChinaProject(2012AA062401)supported by the National High-tech Research and Development Program of China
文摘Pyrolusite was added in the bioleaching process to enhance the bio-oxidation process. Bioleaching tests at different dosages of pyrolusite ore, pH and inoculation amounts of Acidithiobacillus ferrooxidans were studied. The results showed that the time of the bio-oxidation process was decreased obviously and the arsenic leaching rate reached 94.4% after the bioleaching. The bio-oxidation of arsenopyrite and the effective extraction of manganese from pyrolusite were achieved by the bioleaching process. After bioleaching, the leaching rate of gold from the reaction residues reached 95.8% by cyanide leaching. In the bio-oxidation process, pyrolusite increased the redox potential of the solution to accelerate the bioleaching rate. The experiment showed that there were two reaction modes in the bioleaching process.