A field experiment was carried out to explore surface soil mircro-biomass carbon (MBC). The results showed that the difference of soil MBC was significant among three vegetation types in five sample spots in July. T...A field experiment was carried out to explore surface soil mircro-biomass carbon (MBC). The results showed that the difference of soil MBC was significant among three vegetation types in five sample spots in July. The order of surface soil MBC was: Aquaculture pond reed (sample 2)〉 reed of river bank (sample 5)〉 sea- plant(sample 5)〉 river flat(sample 4)〉 The alkaline(sample 1). There is a very sig- nificant correlation among the soil MBC, the water content of soil and the content of organic matter. Among wetland plants, reed is kind of plant content of high ground biomass and below-ground biomass,especially the MBC planted in wetland is high- er, which shows that compared with common plants, reed is more conducive to the accumulation of soil MBC and has an important effect to wetland protecting and re- covery of function of ecosystem.展开更多
As per randomized block design, the research had different fertilizer treatments, and the organic matter, respiration, enzyme activity and microbial carbon and nitrogen in reclaimed soil were studied. Fertilization sc...As per randomized block design, the research had different fertilizer treatments, and the organic matter, respiration, enzyme activity and microbial carbon and nitrogen in reclaimed soil were studied. Fertilization schemes were as follows: The treatment without fertilizers(CK), the treatment with chemical fertilizers(C), the treatment with chemical fertilizers and bacterial fertilizer(CB), the treatment with organic fertilizer and chemical fertilizers(CM), and the treatment with chemical fertilizers, organic fertilizer and bacterial fertilizer(CMB). The results showed: Four fertilization treatments could improve the content of soil organic matter. CMB, CM and CB could significantly improve the soil respiration. Organic fertilizer and fertilizer could significantly improve soil enzyme activity, In different growth stages the CMB treatment had highest urease and phosphatase.The most significant in the treatment content of sucrose was CM. Organic fertilizer and microbial fertilizer can significantly improve the microbial carbon and nitrogen in soil. For the microbial biomass carbon, the CMB treatment increased by 11%-34% than CB treatment, and 35%-63% than C treatment. In terms of microbial nitrogen CMB, CM respectively increased by 31%-51% than CB treatment, and 52%-100% compared with C. In the process of land reclamation, we should combine the organic fertilizer, microbial fertilizer and inorganic fertilizer. Only in this way can soil biological activity be accelerated, soil microbial environment improved, and the ripening increased soil nutrient and soil cultivation be enhanced.展开更多
The impact of pH changes on microbial biomass carbon (Cmic) and microbial biomass phosphorus (Pmic)were examined for 3 red soils under citrus production with different lengths of cultivation. Soil pH significantly aff...The impact of pH changes on microbial biomass carbon (Cmic) and microbial biomass phosphorus (Pmic)were examined for 3 red soils under citrus production with different lengths of cultivation. Soil pH significantly affected Cmic and Pmic. The Cmic and Pmic changes, as a function of soil pH, appeared to follow a normal distribution with the original soil pH value at the apex and as pH increased or decreased compared to the original soil pH, Cmic and Pmic declined. Moreover, there were critical pH values at both extremes (3.0 on the acidic side and 8.0 to 8.5 on the alkaline side), beyond which most of microorganisms could never survive.The effect of pH on Cmic and Pmic was also related to the original soil pH. The higher the original soil pH was, the less Cmic or Pmic were affected by pH change. It is suggested that soil microorganisms that grow in a soil environment with a more neutral soil pH range (I.e. pH 5.5-7.5) may have a greater tolerance to pH changes than those growing in more acidic or more alkaline soil pH conditions.展开更多
Soil samples were collected from different rubber fields in twenty-five plotsselected randomly in the Experimental Farm of the Chinese Academy of Tropical Agriculture Scienceslocated in Hainan, China, to analyse the e...Soil samples were collected from different rubber fields in twenty-five plotsselected randomly in the Experimental Farm of the Chinese Academy of Tropical Agriculture Scienceslocated in Hainan, China, to analyse the ecological effect of rubber cultivation. The results showedthat in the tropical rubber farm, soil microbial biomass C (MBC) and total organic C (TOC) wererelatively low in the content but highly correlated with each other. After rubber tapping, soil MBCof mature rubber fields decreased significantly, by 55.5 percent. compared with immature rubberfields. Soil TOC also decreased but the difference was not significant. Ratios of MBC to TOCdecreased significantly. The decreasing trend of MBC stopped at about ten years of rubbercultivation. After this period, soil MBC increased relatively while soil TOC still kept indecreasing. Soil MBC changes could be measured to predict the tendency of soil organic matterchanges due to management practices in a tropical rubber farm several years before the changes insoil TOC become detectable.展开更多
A study was performed on the long-term effect of straw incorporation on soil microbial biomass C contents, C and N dynamics in both Rothamsted and Woburn soils. The results showed that for both soils,the microbial bio...A study was performed on the long-term effect of straw incorporation on soil microbial biomass C contents, C and N dynamics in both Rothamsted and Woburn soils. The results showed that for both soils,the microbial biomass C contents were significantly different among all the treatments, and followed the sequence in treatments of straw chopped and incorporated into 10 cm (CI10) > straw burnt and incorporated into 10 cm (BI10) > straw chopped and incorporated into 20 cm (CI20) > straw burnt and incorporated into 20 cm (BI20). Laboratory incubation of soils showed that the cumulative CO2 evolution was closely related to the soil microbial biomass C content. Carbon dioxide evolution rates (CO2-C, μg (g d) -1 ) decreased rapidly in the first two weeks’ incubation, then decreased more slowly. The initial K2SO4-extractable NH4-N and NO3-N contents were low and similar in all the treatments, and all increased gradually with the incubation time. However, net N immobilization was observed in chopped treatments for Rothamsted soils during the first 4 weeks. Nevertheless, more N mineralization occurred in neatment CI10 than any other treatment at the end of incubation for both soils. The Woburn soils could more easily suffer from the leaching of nitrate because the soils were more permeable and more N was mineralized during the incubation compared to the Rothamsted soils.展开更多
Mostly based on assumptions derived from controlled-environment studies, predicted future atmospheric CO2 concentrations [CO2] are expected to have considerable impacts on carbon (C) turnover in agro-ecosystems. In ...Mostly based on assumptions derived from controlled-environment studies, predicted future atmospheric CO2 concentrations [CO2] are expected to have considerable impacts on carbon (C) turnover in agro-ecosystems. In order to allow the in situ examination of C-transformations in the plant-soil system of arable crop rotations under future [002], a free air carbon dioxide enrichment (FACE) experiment (550 μmol mol^-1 CO2) was started at Braunschweig, Germany in 1999. The crop rotation under investigation comprised winter barley, a cover crop (ryegrass), sugar beets and winter wheat. Assessments of CO2 effects included the determination of above- and belowground biomass production, measurements of canopy CO2- and H2O- fluxes, soil microbial biomass and in situ soil respiration. The results obtained during the 1st crop rotation cycle (3 years) showed that for the selected crops elevated [CO2] entailed significant positive effects (P 〈 0.05) on aboveground (6%-14% stimulation) and belowground biomass production (up to 90% stimulation), while canopy evapotranspiration was reduced. This resulted in increased soil water content. Also, depending on crop type and season, high CO2 stimulated in situ soil respiration (up to 30%), while soil microbial biomass did not show significant respouses to elevated [CO2] during the first rotation cycle.展开更多
Land use changes are known to alter soil organic carbon (SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and mic...Land use changes are known to alter soil organic carbon (SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and microbial properties in the Changbai Moun- tains of Northeast China is meager. Soil carbon content, microbial biomass carbon (MBC), basal respiration and soil carbon mineraliza- tion were studied in five selected types of land use: natural old-growth broad-leaved Korean pine mixed forest (NF); spruce plantation (SP) established following clear-cutting of NF; cropland (CL); ginseng farmland (GF) previously under NF; and a five-year Mongolian oak young forest (YF) reforested on an abandoned GF, in the Changbai Mountains of Northeast China in 2011. Results showed that SOC content was significantly lower in SP, CL, GF, and YF than in NF. MBC ranged from 304.4 mg/kg in CL to 1350.3 mg/kg in NF, which was significantly higher in the soil of NF than any soil of the other four land use types. The SOC and MBC contents were higher in SP soil than in CL, GF, and YF soils, yielding a significant difference between SP and CL. The value of basal respiration was also higher in NF than in SP, CL, GF, and YF. Simultaneously, higher values of the metabolic quotient were detected in CL, GF, and YF soils, indicat- ing low substrate utilization of the soil microbial community compared with that in NF and SP soil. The values of cumulative mineral- ized carbon and potentially mineralized carbon (Co) in NF were significantly higher than those in CL and GF, while no significant dif- ference was observed between NF and SP. In addition, YF had higher values of Co and C mineralization rate compared with GF. The results indicate that conversion from NF into agricultural land (CL and GF) uses and plantation may lead to a reduction in soil nutrients (SOC and MBC) and substrate utilization efficiency of the microbial community. By contrast, soils below SP were more conducive to the preservation of soil organic matter, which was reflected in the comparison of microbial indicators among CL, GF, and YF land uses. This study can provide data for evaluating soils nutrients under different land use types, and serve as references for the rational land use of natural forest in the study area.展开更多
A pot experiment was carried out with a clay loam in a green house. The results showed that soil microbial biomass C increased with the application of organic manure at the beginning of the experiment and then gradual...A pot experiment was carried out with a clay loam in a green house. The results showed that soil microbial biomass C increased with the application of organic manure at the beginning of the experiment and then gradually decreased with declining of the temperature. The soil biomass C increased at the tillering stage when the temperature gradually increased, and rose to the highest value at the anthesis stage, being about 554.9-794.4 mg C kg-1. The application of organic manure resulted in the highest increase in biomass C among the fertilization treatments while that of ammonium sulphate gave the lowest. At the harvest time the soil biomass C decreased to the presowing level. Like the soil biomass C the amount of biomass P was increased by the incorporation of organic manure and was the highest among the treatments, with the values of the check and ammonium sulphate treatments being the lowest. Meanwhile, the changing patterns of the C/P ratio of soil microbial biomass at stages of wheat growth are also described.展开更多
Eleven red soils varying in land use and fertility status were used to examine the effect of land use on microbial biomass C, N and P. Microbial biomass C in the red soils ranged from about 68 mg C/kg to 225 mg...Eleven red soils varying in land use and fertility status were used to examine the effect of land use on microbial biomass C, N and P. Microbial biomass C in the red soils ranged from about 68 mg C/kg to 225 mg C/kg, which is generally lower than that reported from other types of soil, probably because of low organic matter and high acidity in the red soils. Land use had considerable effects on the amounts of soil C mic . The C mic was the lowest in eroded fallow land, followed by woodland, tea garden, citrus grove and fallow grassland, and the highest in vegetable and paddy fields. There was significant correlation between C mic and organic matter content, suggesting that the influence of land use on C mic is mainly related to the input and accumulation of organic matter. Microbial biomass N in the soils ranged from 12.1 Nmg/kg to 31.7 Nmg/kg and was also affected by land use. The change of N mic with land use was similar to that of C mic . The microbial C/N ratio ranged from 5.2 to 9.9 and averaged 7.6. The N mic was significantly correlated with soil total N and available N. Microbial biomass P in the soils ranged from 4.5 mg P/kg to 52.3 mg P/kg. The microbial C/P ratio was in the range of 4-23. The P mic was relatively less affected by land use due to differences in fertilization practices for various land use systems.展开更多
Phyllostachys praecox C. D. Chu et C. S. Chao, a favored bamboo shoot species, has been widely planted in recent years. Four stands with different historical management practices were selected for this study to unders...Phyllostachys praecox C. D. Chu et C. S. Chao, a favored bamboo shoot species, has been widely planted in recent years. Four stands with different historical management practices were selected for this study to understand the evolution of soil microbial ecology by determining the effects of a new mulching and heavy fertilization practice on soil quality using microbiological parameters. Compared with the traditional practice (index 1), microbial biomass carbon (MBC) and soil microbial respiration carbon (MRC) with the new management practice significantly decreased (P < 0.01 and P < 0.05,respectively) with 1-2 years of mulching (index 2) and then for continued mulching significantly increased (P < 0.05). The ratios of MBC/TOC (total organic carbon) and MRC/TOC also significantly diminished (P < 0.05) with mulching. The average well color development (AWCD) and Shannon index decreased with mulching time, and the significant decrease(P < 0.05) in Shannon index occurred from index 2 to index 3. The results from a principal components analysis (PCA)showed that the scores of the first principal component for indexes 1 and 2 were significantly larger (P < 0.05) than soils mulched 3-4 years or 5-6 years. Also, the second principal component scores for index 1 were larger than those for index 2, suggesting that the ability of soil microorganisms to utilize soil carbon was decreasing with longer use of the new management practice and causing a deterioration of soil biological properties.展开更多
The effects of biological bacterial fertilizer and chemical fertilizer on carbon metabolism characteristics of rhizosphere soil bacteria in rice were studied through a plot experiment.The results showed that the numbe...The effects of biological bacterial fertilizer and chemical fertilizer on carbon metabolism characteristics of rhizosphere soil bacteria in rice were studied through a plot experiment.The results showed that the number and Mcintosh index of bacteria in rice rhizosphere soil increased significantly with the application of biological bacterial fertilizer.It was found that the AWCD(average well color development)value of the bacteria remarkably increased and the decomposition of carboxylic acids,amines and heterozygotes were accelerated when adding biological bacterial fertilizer at a proper weight percent.All in all,proper addition of biological bacterial fertilizer could increase the number and carbon metabolism of bacteria.The most appropriate application rate was 70%chemical fertilizer nitrogen+30%biological bacterial fertilizer nitrogen for rice production in Northern Jiangsu Province.展开更多
A series of pot experiments and field trials were carried out to evaluate the effects of arbuscular mycor- rhizal fungi (AMF) on activities of soil enzymes and carbon sequestration capacity in reclaimed mine soil. A...A series of pot experiments and field trials were carried out to evaluate the effects of arbuscular mycor- rhizal fungi (AMF) on activities of soil enzymes and carbon sequestration capacity in reclaimed mine soil. A complex substrate of coal gangue, fly ash and sludge was used as reclaimed mine soil, and ryegrass was planted with AMF inoculation to construct a plant-complex substrate-microbe ecological restoration sys- tem. The changes to the soil organic carbon (SOC), activities of soil enzymes and glomalin-related soil protein (GRSP) were measured and the effects of AMF on activities of soil enzymes and carbon sequestra- tion capacity (n reclaimed mine soil were analyzed. The results show that the contents of GRSP (total glo- malin (TG) and easily extractable glomalin (EEG)), SOC and activities of enzymes increased, and the increments were higher in the AMF inoculation treated plant-complex substrate-microbe ecological res- toration systems than those with no AMF inoculated treatments after 12 months of ryegrass growth. TG, EEG and soil enzyme activity have a significant positive correlation, and the correlative coefficient was 0.427-0.573; SOC and TG, EEG have a significant positive correlation (p 〈 0.01 ), indicating that AMF plays an important role in carbon sequestration of reclaimed mine soils.展开更多
The objectives of this study were to investigate the effect of higher CO2 concentrations (500 and 700 μmol mol^-1) in atmosphere on total soil respiration and the contribution of root respiration to total soil resp...The objectives of this study were to investigate the effect of higher CO2 concentrations (500 and 700 μmol mol^-1) in atmosphere on total soil respiration and the contribution of root respiration to total soil respiration during seedling growth of Pinus sylvestris vat. sylvestriformis. During the four growing seasons (May-October) from 1999 to 2003, the seedlings were exposed to elevated concentrations of CO2 in open-top chambers. The total soil respiration and contribution of root respiration were measured using an LI-6400-09 soil CO2 flux chamber on June 15 and October 8, 2003. To separate root respiration from total soil respiration, three PVC cylinders were inserted approximately 30 cm deep into the soil in each chamber. There were marked diurnal changes in air and soil temperatures on June 15. Both the total soil respiration and the soil respiration without roots showed a strong diurnal pattern, increasing from before sunrise to about 14:00 in the afternoon and then decreasing before the next sunrise. No increase in the mean total soil respiration and mean soil respiration with roots severed was observed under the elevated CO2 treatments on June 15, 2003, as compared to the open field and control chamber with ambient CO2. However, on October 8, 2003, the total soil respiration and soil respiration with roots severed in the open field were lower than those in the control and elevated CO2 chambers. The mean contribution of root respiration measured on June 15, 2003, ranged from 8.3% to 30.5% and on October 8, 2003, from 20.6% to 48.6%.展开更多
A 12-year field experiment was conducted to investigate the effect of different tillage methods and fertil- ization systems on microbial biomass C, N and P of a gray fluvo-aguic soil in rice-based cropping system. Fiv...A 12-year field experiment was conducted to investigate the effect of different tillage methods and fertil- ization systems on microbial biomass C, N and P of a gray fluvo-aguic soil in rice-based cropping system. Five fertilization treatments were designed under conventional tillage (CT) or no tillage (NT) system: no fertilizer (CK); chemical fertilizer only (CF); combining chemical fertilizer with pig manure (PM); combining chemical fertilizer with crop straw (CS) and fallow (F). The results showed that biomass C, N and P were enriched in the surface layer of no-tilled soil, whereas they distributed relatively evenly in the tilled soil, which might result from enrichment of crop residue, organic manure and mineral fertilizer, and surficial development of root systems under NT. Under the cultivation system, NT had slightly greater biomass C, N and P at 0~5 cm depth, significantly less biomass C, N and P at 5~15 cm depth, less microbial biomass C, N and equivalent biomass P at 15 ~30 cm depth as compared to CT, indicating that tillage was beneficial for the multiplica tion of organisms in the plowed layer of soil. Under the fallow system, biomass C, N and P in the surface layer were significantly greater for NT than CT while their differences between the two tillage methods were negligible in the deeper layers. In the surface layer, biomass C, N and P in the soils amended with organic manure combined with mineral fertilizers were significantly greater than those of the treatments only with mineral fertilizers and the control. Soils without fertilizer had the least biomass nutrient contents among the five fertilization treatments. Obviously, the long-term application of organic manure could maintain the higher activity of microorganisms in soils. The amounts of biomass C, N and P in the fallowed soils varied with the tillage methods; they were much greater under NT than under CT, especially in the surface layer, suggesting that the frequent plowing could decrease the content of organic matter in the surface layer of the fallowed soil.展开更多
Laboratory incubation was conducted to investigate transformation of straw 14 C in Ultisol and Vertisol under aerobic condition for 112 d at 30 oC. Dried and ground 14 C labeled rice and maize...Laboratory incubation was conducted to investigate transformation of straw 14 C in Ultisol and Vertisol under aerobic condition for 112 d at 30 oC. Dried and ground 14 C labeled rice and maize straws were mixed with the soils at the rate of 2.5 g kg -1 . Decomposition of the straw C and native soil C both revealed two stages, being faster during the initial days, and slower thereafter. About 37.33%~48.80% of the straw C and 4.22%~6.83% of the native soil C decomposed by the end of the incubation. The kinds of the straws only slightly influenced the rates of their decomposition in soils, however, some retardation was found in Ultisol at the initial decomposition stage due to its lower pH. Positive priming effects were observed in the soils applied with straw, and the rate of priming effect ranged from 7.23% to 13.80%. Net losses of native soil C were found under such incubation conditions, except Ultisol with rice straw. Soil biomass C and 14 C decreased gradually with incubation time, and seemed to be consistent with the decomposition patterns of straw C and native soil C. The ratio of biomass 12 C to biomass 14 C ranged from 1.35 to 3.37. Soil biomass C occupied 1.17%~2.32% of the total soil organic C, and the proportion of biomass 14 C to the residual 14 C varied from 7.3% to 14.3%.展开更多
Wind erosion is a major cause of land desertification and sandstorm formation in arid and semi-arid areas.The objective of this study was to evaluate the potential of soybeans crude extract induced calcium carbonate p...Wind erosion is a major cause of land desertification and sandstorm formation in arid and semi-arid areas.The objective of this study was to evaluate the potential of soybeans crude extract induced calcium carbonate precipitation(SICP)on reducing wind erosion risk of sandy soil.Field tests were carried out in Ulan Buh Desert,Ningxia Hui Autonomous Region,China.Results showed that the SICP method could significantly enhance the surface strength and wind erosion resistance of the topsoil.The optimal cementation solution(urea-CaCl2)concentration and spraying volume,according to experiments conducted on sandy land,were 0.2 mol/L and 4 L/m^2,respectively.Under this condition,the CaCO3 content was approximately 0.45%,the surface strength of sandy soil could reach 306.2 kPa,and the depth of wind erosion was approximately zero,after 30 d completion of SICP treatment.Soil surface strength declined with the increase of time,and long-term sand fixation effects of SICP treatment varied depending on topography.Whereas wind erosion in the top area of the windward slope was remarkable,sandy soils on the bottom area of the windward slope still maintained a relatively high level of surface strength and a low degree of wind erosion 12 month after SICP treatment.Scanning electron microscopy(SEM)tests with energy dispersive X-ray(EDX)confirmed the precipitation of CaCO3 and its bridge effect.These findings suggested that the SICP method is a promising candidate to protect sandy soil from wind erosion in desert areas.展开更多
基金Supported by National Natural Science Foundation of China(41101080)Provincial Natural Science Foundation of Shandong(ZR2011QD009)+2 种基金Provincial College and University Science and Technology Plan of Shandong(J12LC04)Qingdao Public Domain of Science and Technology Support Project(12-1-3-71-nsh)Excellent Graduate Papers of Qingdao University Engagement Foundation(2014)~~
文摘A field experiment was carried out to explore surface soil mircro-biomass carbon (MBC). The results showed that the difference of soil MBC was significant among three vegetation types in five sample spots in July. The order of surface soil MBC was: Aquaculture pond reed (sample 2)〉 reed of river bank (sample 5)〉 sea- plant(sample 5)〉 river flat(sample 4)〉 The alkaline(sample 1). There is a very sig- nificant correlation among the soil MBC, the water content of soil and the content of organic matter. Among wetland plants, reed is kind of plant content of high ground biomass and below-ground biomass,especially the MBC planted in wetland is high- er, which shows that compared with common plants, reed is more conducive to the accumulation of soil MBC and has an important effect to wetland protecting and re- covery of function of ecosystem.
基金Supported by Natural Science Foundation of Shanxi Province(2014011001-4)~~
文摘As per randomized block design, the research had different fertilizer treatments, and the organic matter, respiration, enzyme activity and microbial carbon and nitrogen in reclaimed soil were studied. Fertilization schemes were as follows: The treatment without fertilizers(CK), the treatment with chemical fertilizers(C), the treatment with chemical fertilizers and bacterial fertilizer(CB), the treatment with organic fertilizer and chemical fertilizers(CM), and the treatment with chemical fertilizers, organic fertilizer and bacterial fertilizer(CMB). The results showed: Four fertilization treatments could improve the content of soil organic matter. CMB, CM and CB could significantly improve the soil respiration. Organic fertilizer and fertilizer could significantly improve soil enzyme activity, In different growth stages the CMB treatment had highest urease and phosphatase.The most significant in the treatment content of sucrose was CM. Organic fertilizer and microbial fertilizer can significantly improve the microbial carbon and nitrogen in soil. For the microbial biomass carbon, the CMB treatment increased by 11%-34% than CB treatment, and 35%-63% than C treatment. In terms of microbial nitrogen CMB, CM respectively increased by 31%-51% than CB treatment, and 52%-100% compared with C. In the process of land reclamation, we should combine the organic fertilizer, microbial fertilizer and inorganic fertilizer. Only in this way can soil biological activity be accelerated, soil microbial environment improved, and the ripening increased soil nutrient and soil cultivation be enhanced.
基金Project supported by the National Natural Science Foundation of China (No. 40025104).
文摘The impact of pH changes on microbial biomass carbon (Cmic) and microbial biomass phosphorus (Pmic)were examined for 3 red soils under citrus production with different lengths of cultivation. Soil pH significantly affected Cmic and Pmic. The Cmic and Pmic changes, as a function of soil pH, appeared to follow a normal distribution with the original soil pH value at the apex and as pH increased or decreased compared to the original soil pH, Cmic and Pmic declined. Moreover, there were critical pH values at both extremes (3.0 on the acidic side and 8.0 to 8.5 on the alkaline side), beyond which most of microorganisms could never survive.The effect of pH on Cmic and Pmic was also related to the original soil pH. The higher the original soil pH was, the less Cmic or Pmic were affected by pH change. It is suggested that soil microorganisms that grow in a soil environment with a more neutral soil pH range (I.e. pH 5.5-7.5) may have a greater tolerance to pH changes than those growing in more acidic or more alkaline soil pH conditions.
基金Project supported by the National Key Basic Research Support Foundation of China (No. G1999011809)the United Nations Development Programme (UNDP, No. CPR/96/105).
文摘Soil samples were collected from different rubber fields in twenty-five plotsselected randomly in the Experimental Farm of the Chinese Academy of Tropical Agriculture Scienceslocated in Hainan, China, to analyse the ecological effect of rubber cultivation. The results showedthat in the tropical rubber farm, soil microbial biomass C (MBC) and total organic C (TOC) wererelatively low in the content but highly correlated with each other. After rubber tapping, soil MBCof mature rubber fields decreased significantly, by 55.5 percent. compared with immature rubberfields. Soil TOC also decreased but the difference was not significant. Ratios of MBC to TOCdecreased significantly. The decreasing trend of MBC stopped at about ten years of rubbercultivation. After this period, soil MBC increased relatively while soil TOC still kept indecreasing. Soil MBC changes could be measured to predict the tendency of soil organic matterchanges due to management practices in a tropical rubber farm several years before the changes insoil TOC become detectable.
文摘A study was performed on the long-term effect of straw incorporation on soil microbial biomass C contents, C and N dynamics in both Rothamsted and Woburn soils. The results showed that for both soils,the microbial biomass C contents were significantly different among all the treatments, and followed the sequence in treatments of straw chopped and incorporated into 10 cm (CI10) > straw burnt and incorporated into 10 cm (BI10) > straw chopped and incorporated into 20 cm (CI20) > straw burnt and incorporated into 20 cm (BI20). Laboratory incubation of soils showed that the cumulative CO2 evolution was closely related to the soil microbial biomass C content. Carbon dioxide evolution rates (CO2-C, μg (g d) -1 ) decreased rapidly in the first two weeks’ incubation, then decreased more slowly. The initial K2SO4-extractable NH4-N and NO3-N contents were low and similar in all the treatments, and all increased gradually with the incubation time. However, net N immobilization was observed in chopped treatments for Rothamsted soils during the first 4 weeks. Nevertheless, more N mineralization occurred in neatment CI10 than any other treatment at the end of incubation for both soils. The Woburn soils could more easily suffer from the leaching of nitrate because the soils were more permeable and more N was mineralized during the incubation compared to the Rothamsted soils.
基金Project supported by the German Ministry of Consumer Protection, Food and Agriculture (BMVEL) and the German Science Foundation (DFG) (No.WE 1839/1-1)
文摘Mostly based on assumptions derived from controlled-environment studies, predicted future atmospheric CO2 concentrations [CO2] are expected to have considerable impacts on carbon (C) turnover in agro-ecosystems. In order to allow the in situ examination of C-transformations in the plant-soil system of arable crop rotations under future [002], a free air carbon dioxide enrichment (FACE) experiment (550 μmol mol^-1 CO2) was started at Braunschweig, Germany in 1999. The crop rotation under investigation comprised winter barley, a cover crop (ryegrass), sugar beets and winter wheat. Assessments of CO2 effects included the determination of above- and belowground biomass production, measurements of canopy CO2- and H2O- fluxes, soil microbial biomass and in situ soil respiration. The results obtained during the 1st crop rotation cycle (3 years) showed that for the selected crops elevated [CO2] entailed significant positive effects (P 〈 0.05) on aboveground (6%-14% stimulation) and belowground biomass production (up to 90% stimulation), while canopy evapotranspiration was reduced. This resulted in increased soil water content. Also, depending on crop type and season, high CO2 stimulated in situ soil respiration (up to 30%), while soil microbial biomass did not show significant respouses to elevated [CO2] during the first rotation cycle.
基金Under the auspices of National Key Technology Research and Development Program of China(No.2012BAD22B04)CFERN&GENE Award Funds on Ecological PaperNational Natural Science Foundation of China(No.30900208)
文摘Land use changes are known to alter soil organic carbon (SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and microbial properties in the Changbai Moun- tains of Northeast China is meager. Soil carbon content, microbial biomass carbon (MBC), basal respiration and soil carbon mineraliza- tion were studied in five selected types of land use: natural old-growth broad-leaved Korean pine mixed forest (NF); spruce plantation (SP) established following clear-cutting of NF; cropland (CL); ginseng farmland (GF) previously under NF; and a five-year Mongolian oak young forest (YF) reforested on an abandoned GF, in the Changbai Mountains of Northeast China in 2011. Results showed that SOC content was significantly lower in SP, CL, GF, and YF than in NF. MBC ranged from 304.4 mg/kg in CL to 1350.3 mg/kg in NF, which was significantly higher in the soil of NF than any soil of the other four land use types. The SOC and MBC contents were higher in SP soil than in CL, GF, and YF soils, yielding a significant difference between SP and CL. The value of basal respiration was also higher in NF than in SP, CL, GF, and YF. Simultaneously, higher values of the metabolic quotient were detected in CL, GF, and YF soils, indicat- ing low substrate utilization of the soil microbial community compared with that in NF and SP soil. The values of cumulative mineral- ized carbon and potentially mineralized carbon (Co) in NF were significantly higher than those in CL and GF, while no significant dif- ference was observed between NF and SP. In addition, YF had higher values of Co and C mineralization rate compared with GF. The results indicate that conversion from NF into agricultural land (CL and GF) uses and plantation may lead to a reduction in soil nutrients (SOC and MBC) and substrate utilization efficiency of the microbial community. By contrast, soils below SP were more conducive to the preservation of soil organic matter, which was reflected in the comparison of microbial indicators among CL, GF, and YF land uses. This study can provide data for evaluating soils nutrients under different land use types, and serve as references for the rational land use of natural forest in the study area.
文摘A pot experiment was carried out with a clay loam in a green house. The results showed that soil microbial biomass C increased with the application of organic manure at the beginning of the experiment and then gradually decreased with declining of the temperature. The soil biomass C increased at the tillering stage when the temperature gradually increased, and rose to the highest value at the anthesis stage, being about 554.9-794.4 mg C kg-1. The application of organic manure resulted in the highest increase in biomass C among the fertilization treatments while that of ammonium sulphate gave the lowest. At the harvest time the soil biomass C decreased to the presowing level. Like the soil biomass C the amount of biomass P was increased by the incorporation of organic manure and was the highest among the treatments, with the values of the check and ammonium sulphate treatments being the lowest. Meanwhile, the changing patterns of the C/P ratio of soil microbial biomass at stages of wheat growth are also described.
文摘Eleven red soils varying in land use and fertility status were used to examine the effect of land use on microbial biomass C, N and P. Microbial biomass C in the red soils ranged from about 68 mg C/kg to 225 mg C/kg, which is generally lower than that reported from other types of soil, probably because of low organic matter and high acidity in the red soils. Land use had considerable effects on the amounts of soil C mic . The C mic was the lowest in eroded fallow land, followed by woodland, tea garden, citrus grove and fallow grassland, and the highest in vegetable and paddy fields. There was significant correlation between C mic and organic matter content, suggesting that the influence of land use on C mic is mainly related to the input and accumulation of organic matter. Microbial biomass N in the soils ranged from 12.1 Nmg/kg to 31.7 Nmg/kg and was also affected by land use. The change of N mic with land use was similar to that of C mic . The microbial C/N ratio ranged from 5.2 to 9.9 and averaged 7.6. The N mic was significantly correlated with soil total N and available N. Microbial biomass P in the soils ranged from 4.5 mg P/kg to 52.3 mg P/kg. The microbial C/P ratio was in the range of 4-23. The P mic was relatively less affected by land use due to differences in fertilization practices for various land use systems.
文摘Phyllostachys praecox C. D. Chu et C. S. Chao, a favored bamboo shoot species, has been widely planted in recent years. Four stands with different historical management practices were selected for this study to understand the evolution of soil microbial ecology by determining the effects of a new mulching and heavy fertilization practice on soil quality using microbiological parameters. Compared with the traditional practice (index 1), microbial biomass carbon (MBC) and soil microbial respiration carbon (MRC) with the new management practice significantly decreased (P < 0.01 and P < 0.05,respectively) with 1-2 years of mulching (index 2) and then for continued mulching significantly increased (P < 0.05). The ratios of MBC/TOC (total organic carbon) and MRC/TOC also significantly diminished (P < 0.05) with mulching. The average well color development (AWCD) and Shannon index decreased with mulching time, and the significant decrease(P < 0.05) in Shannon index occurred from index 2 to index 3. The results from a principal components analysis (PCA)showed that the scores of the first principal component for indexes 1 and 2 were significantly larger (P < 0.05) than soils mulched 3-4 years or 5-6 years. Also, the second principal component scores for index 1 were larger than those for index 2, suggesting that the ability of soil microorganisms to utilize soil carbon was decreasing with longer use of the new management practice and causing a deterioration of soil biological properties.
文摘The effects of biological bacterial fertilizer and chemical fertilizer on carbon metabolism characteristics of rhizosphere soil bacteria in rice were studied through a plot experiment.The results showed that the number and Mcintosh index of bacteria in rice rhizosphere soil increased significantly with the application of biological bacterial fertilizer.It was found that the AWCD(average well color development)value of the bacteria remarkably increased and the decomposition of carboxylic acids,amines and heterozygotes were accelerated when adding biological bacterial fertilizer at a proper weight percent.All in all,proper addition of biological bacterial fertilizer could increase the number and carbon metabolism of bacteria.The most appropriate application rate was 70%chemical fertilizer nitrogen+30%biological bacterial fertilizer nitrogen for rice production in Northern Jiangsu Province.
基金supported by the Environmental Science andTechnology Fund of Environmental Protection Department of Jiangsu Province,China (No. 2007024)
文摘A series of pot experiments and field trials were carried out to evaluate the effects of arbuscular mycor- rhizal fungi (AMF) on activities of soil enzymes and carbon sequestration capacity in reclaimed mine soil. A complex substrate of coal gangue, fly ash and sludge was used as reclaimed mine soil, and ryegrass was planted with AMF inoculation to construct a plant-complex substrate-microbe ecological restoration sys- tem. The changes to the soil organic carbon (SOC), activities of soil enzymes and glomalin-related soil protein (GRSP) were measured and the effects of AMF on activities of soil enzymes and carbon sequestra- tion capacity (n reclaimed mine soil were analyzed. The results show that the contents of GRSP (total glo- malin (TG) and easily extractable glomalin (EEG)), SOC and activities of enzymes increased, and the increments were higher in the AMF inoculation treated plant-complex substrate-microbe ecological res- toration systems than those with no AMF inoculated treatments after 12 months of ryegrass growth. TG, EEG and soil enzyme activity have a significant positive correlation, and the correlative coefficient was 0.427-0.573; SOC and TG, EEG have a significant positive correlation (p 〈 0.01 ), indicating that AMF plays an important role in carbon sequestration of reclaimed mine soils.
基金Project supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (No.KZCX2-YW-416)National NaturM Science Foundation of China (No.90411020)
文摘The objectives of this study were to investigate the effect of higher CO2 concentrations (500 and 700 μmol mol^-1) in atmosphere on total soil respiration and the contribution of root respiration to total soil respiration during seedling growth of Pinus sylvestris vat. sylvestriformis. During the four growing seasons (May-October) from 1999 to 2003, the seedlings were exposed to elevated concentrations of CO2 in open-top chambers. The total soil respiration and contribution of root respiration were measured using an LI-6400-09 soil CO2 flux chamber on June 15 and October 8, 2003. To separate root respiration from total soil respiration, three PVC cylinders were inserted approximately 30 cm deep into the soil in each chamber. There were marked diurnal changes in air and soil temperatures on June 15. Both the total soil respiration and the soil respiration without roots showed a strong diurnal pattern, increasing from before sunrise to about 14:00 in the afternoon and then decreasing before the next sunrise. No increase in the mean total soil respiration and mean soil respiration with roots severed was observed under the elevated CO2 treatments on June 15, 2003, as compared to the open field and control chamber with ambient CO2. However, on October 8, 2003, the total soil respiration and soil respiration with roots severed in the open field were lower than those in the control and elevated CO2 chambers. The mean contribution of root respiration measured on June 15, 2003, ranged from 8.3% to 30.5% and on October 8, 2003, from 20.6% to 48.6%.
基金Project (Nos. 39430090 and 33880537) supported by the National Natural Science Foundation of China.
文摘A 12-year field experiment was conducted to investigate the effect of different tillage methods and fertil- ization systems on microbial biomass C, N and P of a gray fluvo-aguic soil in rice-based cropping system. Five fertilization treatments were designed under conventional tillage (CT) or no tillage (NT) system: no fertilizer (CK); chemical fertilizer only (CF); combining chemical fertilizer with pig manure (PM); combining chemical fertilizer with crop straw (CS) and fallow (F). The results showed that biomass C, N and P were enriched in the surface layer of no-tilled soil, whereas they distributed relatively evenly in the tilled soil, which might result from enrichment of crop residue, organic manure and mineral fertilizer, and surficial development of root systems under NT. Under the cultivation system, NT had slightly greater biomass C, N and P at 0~5 cm depth, significantly less biomass C, N and P at 5~15 cm depth, less microbial biomass C, N and equivalent biomass P at 15 ~30 cm depth as compared to CT, indicating that tillage was beneficial for the multiplica tion of organisms in the plowed layer of soil. Under the fallow system, biomass C, N and P in the surface layer were significantly greater for NT than CT while their differences between the two tillage methods were negligible in the deeper layers. In the surface layer, biomass C, N and P in the soils amended with organic manure combined with mineral fertilizers were significantly greater than those of the treatments only with mineral fertilizers and the control. Soils without fertilizer had the least biomass nutrient contents among the five fertilization treatments. Obviously, the long-term application of organic manure could maintain the higher activity of microorganisms in soils. The amounts of biomass C, N and P in the fallowed soils varied with the tillage methods; they were much greater under NT than under CT, especially in the surface layer, suggesting that the frequent plowing could decrease the content of organic matter in the surface layer of the fallowed soil.
文摘Laboratory incubation was conducted to investigate transformation of straw 14 C in Ultisol and Vertisol under aerobic condition for 112 d at 30 oC. Dried and ground 14 C labeled rice and maize straws were mixed with the soils at the rate of 2.5 g kg -1 . Decomposition of the straw C and native soil C both revealed two stages, being faster during the initial days, and slower thereafter. About 37.33%~48.80% of the straw C and 4.22%~6.83% of the native soil C decomposed by the end of the incubation. The kinds of the straws only slightly influenced the rates of their decomposition in soils, however, some retardation was found in Ultisol at the initial decomposition stage due to its lower pH. Positive priming effects were observed in the soils applied with straw, and the rate of priming effect ranged from 7.23% to 13.80%. Net losses of native soil C were found under such incubation conditions, except Ultisol with rice straw. Soil biomass C and 14 C decreased gradually with incubation time, and seemed to be consistent with the decomposition patterns of straw C and native soil C. The ratio of biomass 12 C to biomass 14 C ranged from 1.35 to 3.37. Soil biomass C occupied 1.17%~2.32% of the total soil organic C, and the proportion of biomass 14 C to the residual 14 C varied from 7.3% to 14.3%.
基金Projects(51978244,51979088,51608169)supported by the National Natural Science Foundation of China。
文摘Wind erosion is a major cause of land desertification and sandstorm formation in arid and semi-arid areas.The objective of this study was to evaluate the potential of soybeans crude extract induced calcium carbonate precipitation(SICP)on reducing wind erosion risk of sandy soil.Field tests were carried out in Ulan Buh Desert,Ningxia Hui Autonomous Region,China.Results showed that the SICP method could significantly enhance the surface strength and wind erosion resistance of the topsoil.The optimal cementation solution(urea-CaCl2)concentration and spraying volume,according to experiments conducted on sandy land,were 0.2 mol/L and 4 L/m^2,respectively.Under this condition,the CaCO3 content was approximately 0.45%,the surface strength of sandy soil could reach 306.2 kPa,and the depth of wind erosion was approximately zero,after 30 d completion of SICP treatment.Soil surface strength declined with the increase of time,and long-term sand fixation effects of SICP treatment varied depending on topography.Whereas wind erosion in the top area of the windward slope was remarkable,sandy soils on the bottom area of the windward slope still maintained a relatively high level of surface strength and a low degree of wind erosion 12 month after SICP treatment.Scanning electron microscopy(SEM)tests with energy dispersive X-ray(EDX)confirmed the precipitation of CaCO3 and its bridge effect.These findings suggested that the SICP method is a promising candidate to protect sandy soil from wind erosion in desert areas.