Elective culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in 9K medium modified with pyrrhotite was studied.Bioleaching of flotation concentrate of sphalerite by the selected bacteria was ca...Elective culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in 9K medium modified with pyrrhotite was studied.Bioleaching of flotation concentrate of sphalerite by the selected bacteria was carried out.The results show that the microorganisms cultured by pyrrhotite are a mixture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans,of which the capability to oxidize ferrous to ferric irons is enhanced by the high mass ratio of Fe to S in pyrrhotite.Three pyrrhotite samples were separated into various parts with corresponding S/Fe ratios by magnetic separation and were used to culture the elective bacteria as the substrate.The association of the cultures could provide a more rapid and complete oxidation of sphalerite than that of bacteria cultivated by conventional methods.展开更多
Bacterial leaching of single sulfide minerals and polymetallic sulfide ores was operated in shake flasks and small-scaled columns.The results show that bioleaching of jamesonite is not accessible,the iron extraction r...Bacterial leaching of single sulfide minerals and polymetallic sulfide ores was operated in shake flasks and small-scaled columns.The results show that bioleaching of jamesonite is not accessible,the iron extraction rate of pyrrhotite bioleaching reaches 98.2% after 26 d,and the zinc extraction rate of marmatite bioleaching reaches 92.3%,while the corresponding iron extraction reaches only 13.6% after 29 d.Pulp density has a significant effect on metal extraction of pyrrhotite and marmatite bioleaching.The corresponding metal extraction rate decreases with the increase of pulp density.For the polymetallic sulfide ores,zinc extraction of 97.1% is achieved after bioleaching in shake flasks for 10 d,while only 7.8% is obtained after bioleaching in small-scaled column.Analytical results of scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDX) reveal that large amount of calcium sulfate is formed on the mineral surface.展开更多
The bioleaching of pyrrhotite was investigated using Sulfobacillus thermosulfidooxidans.The effects of pH,pulp concentration,inoculation amount,external addition of ferrous and ferric ions were examined.The pH is foun...The bioleaching of pyrrhotite was investigated using Sulfobacillus thermosulfidooxidans.The effects of pH,pulp concentration,inoculation amount,external addition of ferrous and ferric ions were examined.The pH is found to exert a profound effect on the leaching process for controlling the bacterial activity and precipitation of ferric ions mainly as jarosite.The results show that low pulp content increases the leaching rate of iron.The inoculation amount from 1×107 cell/mL to 1×108 cell/mL has positive effects on the leaching rate.The results also imply that addition of ferrous sulfate(1 g/L) is required for the bacteria to efficiently drive the extraction of iron,however,the leaching efficiency has no obvious enhancement when 2 g/L ferrous sulfate was added.Comparatively,addition of ferric sulfate(2 g/L) significantly inhibits the bioleaching process.At the end of bioleaching,jarosite and sulfur are observed on the surface of pyrrhotite residues by using XRD and SEM.With the passivation film formed by jarosite and sulfur,the continuous iron extraction is effectively blocked.展开更多
Objective:To evaluate the in vitro and in vivo toxicity of self-prepared nanosized Fe2O3, which has the potential implication in tumor hyperthermia. Methods: Fe2O3 nanoparticles were prepared by improving co-precipi...Objective:To evaluate the in vitro and in vivo toxicity of self-prepared nanosized Fe2O3, which has the potential implication in tumor hyperthermia. Methods: Fe2O3 nanoparticles were prepared by improving co-precipitation, which characterization was detected by TEM, XRD, CMIAS, EDS. MTT assay was used to evaluate the in vitro cytotoxicity test; hemolytic test was carried out to estimate whether it has blood toxicity; Fe2O3 suspended in sterile 0.9% NaCl was intraperitoneally injected into Kumning mouse to calculate the LD50 ; micronucleus (MN) were reckoned to identify whether it is genotoxic. Results:The nanoparticles are brown spherical particles with diameter ranging from 8 to 15 nm, which have good decentralization and stability. The experiments also showed that the toxicity of the material on mouse fibroblast (L-929) cell lines was 0 - 1 degree ; it has no hemolysis activity; LD50 arrived at 5.45 g/kg^-1 after intraperitoneal injection of 1 ml suspension; micronucleus test showed that it has no genotoxic effects either. Conclusion: The results showed that the Fe2O3 nanoparticles are prepared successfully, the self-prepared nanosized Fe2O3 is a kind of high biocompatibility materials and perhaps it is suitable for further application in tumor hyperthermia.展开更多
The magnetic transitions in graphene oxide (GO) have been investigated experimentally. Micron-sized GO flakes exhibit dominant diamagnetism accompanied by weak ferromagnetism at room temperature. However, when the l...The magnetic transitions in graphene oxide (GO) have been investigated experimentally. Micron-sized GO flakes exhibit dominant diamagnetism accompanied by weak ferromagnetism at room temperature. However, when the lateral dimensions of GO flakes are reduced from micron-size to nano-size, a clear transition from dominant diamagnetism to ferromagnetism is observed. After reducing the GO chemically or thermally, the dominant magnetic properties are not altered markedly except for the gradual enhancement of ferromagnetic components. In contrast, at 2 K, significant paramagnetism is present in both the micron-sized and nano-sized GO sheets. The effects of different functional groups on magnetic transitions in graphene derivatives have been further investigated using on hydroxyl-, carboxyl-, amino- and thiol- functionalized graphene. The results reveal that significant diamagnetism with weak ferromagnetism is present at room temperature in all of these functionalized graphene derivatives and the ability of different functional groups to introduce magnetic moments follows the order -SH 〉 --OH 〉 -COOH, -NH2. Notably, at 5 K, diamagnetism, paramagnetism and ferromagnetism coexist in thiol-, hydroxyl- and carboxyl-functionalized graphene, while amino-graphene exhibits dominant paramagnetism, analogous to the low-temperature magnetism in GO. These results indicate that diamagnetism, paramagnetism and ferromagnetism can coexist in graphene derivatives and magnetic transitions among the three states can be achieved which depend on edge states, vacancies, chemical doping and the attached functional groups. The results obtained may help settle the current controversy about the magnetism of graphene-related materials.展开更多
基金Project(50621063)supported by the National Natural Science Foundation of ChinaProject(2004CD619205)supported by the Major StateBasic Research Development Program of China
文摘Elective culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in 9K medium modified with pyrrhotite was studied.Bioleaching of flotation concentrate of sphalerite by the selected bacteria was carried out.The results show that the microorganisms cultured by pyrrhotite are a mixture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans,of which the capability to oxidize ferrous to ferric irons is enhanced by the high mass ratio of Fe to S in pyrrhotite.Three pyrrhotite samples were separated into various parts with corresponding S/Fe ratios by magnetic separation and were used to culture the elective bacteria as the substrate.The association of the cultures could provide a more rapid and complete oxidation of sphalerite than that of bacteria cultivated by conventional methods.
基金Project(51374248) supported by the National Natural Science Foundation of ChinaProject(NCET-13-0595) supported by Program for New Century Excellent Talents in University,China+1 种基金Project(2012AA061501) supported by the National High Technology Research and Development Program of ChinaProject(20120162120010) supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘Bacterial leaching of single sulfide minerals and polymetallic sulfide ores was operated in shake flasks and small-scaled columns.The results show that bioleaching of jamesonite is not accessible,the iron extraction rate of pyrrhotite bioleaching reaches 98.2% after 26 d,and the zinc extraction rate of marmatite bioleaching reaches 92.3%,while the corresponding iron extraction reaches only 13.6% after 29 d.Pulp density has a significant effect on metal extraction of pyrrhotite and marmatite bioleaching.The corresponding metal extraction rate decreases with the increase of pulp density.For the polymetallic sulfide ores,zinc extraction of 97.1% is achieved after bioleaching in shake flasks for 10 d,while only 7.8% is obtained after bioleaching in small-scaled column.Analytical results of scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDX) reveal that large amount of calcium sulfate is formed on the mineral surface.
基金Project(2010CB630903) supported by the National Basic Research Program of China
文摘The bioleaching of pyrrhotite was investigated using Sulfobacillus thermosulfidooxidans.The effects of pH,pulp concentration,inoculation amount,external addition of ferrous and ferric ions were examined.The pH is found to exert a profound effect on the leaching process for controlling the bacterial activity and precipitation of ferric ions mainly as jarosite.The results show that low pulp content increases the leaching rate of iron.The inoculation amount from 1×107 cell/mL to 1×108 cell/mL has positive effects on the leaching rate.The results also imply that addition of ferrous sulfate(1 g/L) is required for the bacteria to efficiently drive the extraction of iron,however,the leaching efficiency has no obvious enhancement when 2 g/L ferrous sulfate was added.Comparatively,addition of ferric sulfate(2 g/L) significantly inhibits the bioleaching process.At the end of bioleaching,jarosite and sulfur are observed on the surface of pyrrhotite residues by using XRD and SEM.With the passivation film formed by jarosite and sulfur,the continuous iron extraction is effectively blocked.
基金Grant sponsor:National Natural Science Foundation of China,Grant number:30371830Grant sponsor:National Hi-tech research and development program of China,Grant number:2002AA302207+3 种基金 Grant sponsor:Natural Science Foundation of Jiangsu,Grant number:BK2001003Grant sponsor:Hi-tech research pro-gram of Jiangsu,Grant number:BG2001006 Grant sponsor:Key Project of Chinese Traditional Medicine of Jiangsu,Grant number:H027Grant sponsor:Sci-ence Foundation of Southeast University,Grant number:9223001162
文摘Objective:To evaluate the in vitro and in vivo toxicity of self-prepared nanosized Fe2O3, which has the potential implication in tumor hyperthermia. Methods: Fe2O3 nanoparticles were prepared by improving co-precipitation, which characterization was detected by TEM, XRD, CMIAS, EDS. MTT assay was used to evaluate the in vitro cytotoxicity test; hemolytic test was carried out to estimate whether it has blood toxicity; Fe2O3 suspended in sterile 0.9% NaCl was intraperitoneally injected into Kumning mouse to calculate the LD50 ; micronucleus (MN) were reckoned to identify whether it is genotoxic. Results:The nanoparticles are brown spherical particles with diameter ranging from 8 to 15 nm, which have good decentralization and stability. The experiments also showed that the toxicity of the material on mouse fibroblast (L-929) cell lines was 0 - 1 degree ; it has no hemolysis activity; LD50 arrived at 5.45 g/kg^-1 after intraperitoneal injection of 1 ml suspension; micronucleus test showed that it has no genotoxic effects either. Conclusion: The results showed that the Fe2O3 nanoparticles are prepared successfully, the self-prepared nanosized Fe2O3 is a kind of high biocompatibility materials and perhaps it is suitable for further application in tumor hyperthermia.
基金This work is supported by the National Natural Science Foundation of China (No. 51372133), the Beijing Science and Technology Program (No. D141100000514001), the National Program on Key Basic Research Projects (Nos. 2013CB934201, 2011CB013000), and the Tsinghua University Initiative Scientific Research Program (No. 2012Z02102).
文摘The magnetic transitions in graphene oxide (GO) have been investigated experimentally. Micron-sized GO flakes exhibit dominant diamagnetism accompanied by weak ferromagnetism at room temperature. However, when the lateral dimensions of GO flakes are reduced from micron-size to nano-size, a clear transition from dominant diamagnetism to ferromagnetism is observed. After reducing the GO chemically or thermally, the dominant magnetic properties are not altered markedly except for the gradual enhancement of ferromagnetic components. In contrast, at 2 K, significant paramagnetism is present in both the micron-sized and nano-sized GO sheets. The effects of different functional groups on magnetic transitions in graphene derivatives have been further investigated using on hydroxyl-, carboxyl-, amino- and thiol- functionalized graphene. The results reveal that significant diamagnetism with weak ferromagnetism is present at room temperature in all of these functionalized graphene derivatives and the ability of different functional groups to introduce magnetic moments follows the order -SH 〉 --OH 〉 -COOH, -NH2. Notably, at 5 K, diamagnetism, paramagnetism and ferromagnetism coexist in thiol-, hydroxyl- and carboxyl-functionalized graphene, while amino-graphene exhibits dominant paramagnetism, analogous to the low-temperature magnetism in GO. These results indicate that diamagnetism, paramagnetism and ferromagnetism can coexist in graphene derivatives and magnetic transitions among the three states can be achieved which depend on edge states, vacancies, chemical doping and the attached functional groups. The results obtained may help settle the current controversy about the magnetism of graphene-related materials.