A Mg?6%Zn?10%Ca3(PO4)2 composite with a chitosan coating was prepared to study its in vivo biodegradation properties. The chitosan dissolved in a 0.2% acetic acid solution was applied on the surface of Mg?6%Zn?10%Ca3(...A Mg?6%Zn?10%Ca3(PO4)2 composite with a chitosan coating was prepared to study its in vivo biodegradation properties. The chitosan dissolved in a 0.2% acetic acid solution was applied on the surface of Mg?6%Zn?10%Ca3(PO4)2 composite specimens and solidified at 60 °C for 30 min to form the coating. The cytotoxicity evaluation of chitosan coated specimens is at level 0, which indicates that such coating is safe for cellular applications. The in vivotests of chitosan coated composite show that the concentration of metal ions from the composite measured in the venous blood of Zelanian rabbits is less than that from the uncoated composite specimens. The chitosan coating impedes the in vivo degradation of the composite after surgery. The in vivo testing also indicates that the chitosan coated composite is harmless to important visceral organs, including the heart, kidneys and liver of the rabbits. The new bone formation surrounding the chitosan coated composite implant shows that the composite improves the concrescence of the bone tissues. And the chitosan coating is an effective corrosion resistant layer that reduces the hydrogen release of the implant composite, thereby decreasing the subcutaneous gas bubbles formed.展开更多
In this paper, a study to enhance the filtration for solid/liquid materials difficult to be filtered, such as highly viscous, highly compactible or gel like materials, is presented. Filter aids diatomaceous earth and ...In this paper, a study to enhance the filtration for solid/liquid materials difficult to be filtered, such as highly viscous, highly compactible or gel like materials, is presented. Filter aids diatomaceous earth and wood pulp cellulose are used to enhance the filtration by improving filter cake structure and properties in the filtration of a biological health product and a highly viscous chemical fiber polymer melt product. The property of solid/liquidsystems, filtration at different flow rates, specitic cake resistance, cake wetness, filtration rate, filtrate turbidity for filter aid selection and evaluation, and operation optimization are investigated. The results are successfully applied to industrial process, .and can be used as a reference for similar filtration applications.展开更多
Objective To assess the microleakage of Class V restorations made with two resin-modified glass ionomer cements (RMGICs) and two polyacid-modified composite resins (PMCRs). Methods Restorations of the four materia...Objective To assess the microleakage of Class V restorations made with two resin-modified glass ionomer cements (RMGICs) and two polyacid-modified composite resins (PMCRs). Methods Restorations of the four materials ( GC Fuji Ⅱ LC, Vitremer^TM, Dyract AP and F2000^TM ) were placed in facial Class V cavity preparations in forty noncarious human molar teeth. Teeth were randomly assigned to 4 experimental groups of 10 teeth each. After thermal cycling( ×20, 5 -55℃ ) , the interface between dentin and restorations was spattercoated with gold and observed under scanning electron microscopy (SEM). Then the square and average width of margin gaps of central 1/3 interface were recorded with image analysis software. Results The data indicated no significant differences between all the restorative materials for both occlusal and gingival margins. Further analysis revealed there were statistically significant differences between occlusal margins and gingival margins for VitremerTM and Dyract AP, respectively. Conclusion None of the tested materials guaranteed margins free of microleakage. Resin-modified glass ionomer cements showed similar margin gaps to the polyacid-modified composite resins tested.展开更多
The bulk ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) by various phosphoric acids using phenylmethanol as the initiator was conducted. 1, 1'-bi-2-Naphthol (BINOL)-based phosphoric acid was found...The bulk ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) by various phosphoric acids using phenylmethanol as the initiator was conducted. 1, 1'-bi-2-Naphthol (BINOL)-based phosphoric acid was found to be an effective organocatalyst for ROP leading to polyesters at 90℃. The overall conversion to poly(ε-caprolactone) was more than 96% and poly(ε-caprolactone) with Mw of 8400 and polydispersity index of 1.13 was obtained. IH NMR spectra of oligomers demonstrated the quantitative incorporation of the protic initiator in the polymer chains and showed that transesterification reactions did not occur to a significant extent. The controlled polymerization was indicated by the linear relationships between the number-average molar mass and monomer conversion or monomer-to-initiator ratio. In addition, the present protocol provided an easy-to-handle, inexpensive and environmentally benign entry for the synthesis of biodegradable materials as well as polyesters for biomedical applications.展开更多
基金Project(2014)supported by the Open Fund of the State Key Laboratory of Powder Metallurgy,China
文摘A Mg?6%Zn?10%Ca3(PO4)2 composite with a chitosan coating was prepared to study its in vivo biodegradation properties. The chitosan dissolved in a 0.2% acetic acid solution was applied on the surface of Mg?6%Zn?10%Ca3(PO4)2 composite specimens and solidified at 60 °C for 30 min to form the coating. The cytotoxicity evaluation of chitosan coated specimens is at level 0, which indicates that such coating is safe for cellular applications. The in vivotests of chitosan coated composite show that the concentration of metal ions from the composite measured in the venous blood of Zelanian rabbits is less than that from the uncoated composite specimens. The chitosan coating impedes the in vivo degradation of the composite after surgery. The in vivo testing also indicates that the chitosan coated composite is harmless to important visceral organs, including the heart, kidneys and liver of the rabbits. The new bone formation surrounding the chitosan coated composite implant shows that the composite improves the concrescence of the bone tissues. And the chitosan coating is an effective corrosion resistant layer that reduces the hydrogen release of the implant composite, thereby decreasing the subcutaneous gas bubbles formed.
文摘In this paper, a study to enhance the filtration for solid/liquid materials difficult to be filtered, such as highly viscous, highly compactible or gel like materials, is presented. Filter aids diatomaceous earth and wood pulp cellulose are used to enhance the filtration by improving filter cake structure and properties in the filtration of a biological health product and a highly viscous chemical fiber polymer melt product. The property of solid/liquidsystems, filtration at different flow rates, specitic cake resistance, cake wetness, filtration rate, filtrate turbidity for filter aid selection and evaluation, and operation optimization are investigated. The results are successfully applied to industrial process, .and can be used as a reference for similar filtration applications.
文摘Objective To assess the microleakage of Class V restorations made with two resin-modified glass ionomer cements (RMGICs) and two polyacid-modified composite resins (PMCRs). Methods Restorations of the four materials ( GC Fuji Ⅱ LC, Vitremer^TM, Dyract AP and F2000^TM ) were placed in facial Class V cavity preparations in forty noncarious human molar teeth. Teeth were randomly assigned to 4 experimental groups of 10 teeth each. After thermal cycling( ×20, 5 -55℃ ) , the interface between dentin and restorations was spattercoated with gold and observed under scanning electron microscopy (SEM). Then the square and average width of margin gaps of central 1/3 interface were recorded with image analysis software. Results The data indicated no significant differences between all the restorative materials for both occlusal and gingival margins. Further analysis revealed there were statistically significant differences between occlusal margins and gingival margins for VitremerTM and Dyract AP, respectively. Conclusion None of the tested materials guaranteed margins free of microleakage. Resin-modified glass ionomer cements showed similar margin gaps to the polyacid-modified composite resins tested.
基金supported by the Fundamental Research Funds for the Central Universities (DL11CB06)
文摘The bulk ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) by various phosphoric acids using phenylmethanol as the initiator was conducted. 1, 1'-bi-2-Naphthol (BINOL)-based phosphoric acid was found to be an effective organocatalyst for ROP leading to polyesters at 90℃. The overall conversion to poly(ε-caprolactone) was more than 96% and poly(ε-caprolactone) with Mw of 8400 and polydispersity index of 1.13 was obtained. IH NMR spectra of oligomers demonstrated the quantitative incorporation of the protic initiator in the polymer chains and showed that transesterification reactions did not occur to a significant extent. The controlled polymerization was indicated by the linear relationships between the number-average molar mass and monomer conversion or monomer-to-initiator ratio. In addition, the present protocol provided an easy-to-handle, inexpensive and environmentally benign entry for the synthesis of biodegradable materials as well as polyesters for biomedical applications.