The magnetization reduction of hematite using biomass waste can effectively utilize waste and reduce CO_(2) emission to achieve the goals of carbon peaking and carbon neutrality.The effects of temperatures on suspensi...The magnetization reduction of hematite using biomass waste can effectively utilize waste and reduce CO_(2) emission to achieve the goals of carbon peaking and carbon neutrality.The effects of temperatures on suspension magnetization roasting of hematite using biomass waste for evolved gases have been investigated using TG-FTIR,Py-GC/MS and gas composition analyzer.The mixture reduction process is divided into four stages.In the temperature range of 200-450℃ for mixture,the release of CO_(2),acids,and ketones is dominated in gases products.The yield and concentration of small molecules reducing gases increase when the temperature increases from 450 to 900℃.At 700℃,the volume concentrations of CO,H_(2) and CH_(4) peak at 8.91%,8.90% and 4.91%,respectively.During the suspension magnetization roasting process,an optimal iron concentrate with an iron grade of 70.86%,a recovery of 98.66% and a magnetic conversion of 45.70% is obtained at 700℃.Therefore,the magnetization reduction could react greatly in the temperature range of 600 to 700℃ owing to the suitable reducing gases.This study shows a detail gaseous evolution of roasting temperature and provides a new insight for studying the reduction process of hematite using biomass waste.展开更多
NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the f...NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the following DTO, were also investigated using biosyngas as feed gas over Cu/Zn/A1/HZSM-5 and the optimized 2%NiSAPO-34/HZSM- 5. The results indicated that adding 2%Ni to SAPO-34 did not change its topology structure, but resulted in the forming of the moderately strong acidity with decreasing acid amounts, which slightly enhanced DME conversion activity and C2=-C3= selectiw ity. Mechanically mixing 2%NiSAPO-34 with HZSM-5 at the weight ratio of 3.0 further prolonged DME conversion activity to be more than 3 h, which was due to the stable acid sites from HZSM-5. The highest selectivity to light olefins of 90.8% was achieved at 2 h time on stream. The application of the optimized 2%NiSAPO-34/HZSM-5 in the second-stage reactor for DTO reaction showed that the catalytic activity was steady for more than 5 h and light olefin yield was as high as 84.6 g/m3syngas when the biosyngas (H2/CO/CO2/N2/CH4=41.5/26.9/14.2/14.6/2.89, vol%) with low H/C ratio of 1.0 was used as feed gas.展开更多
Fluidized bed biomass gasifiers can be employed to produce hydrogen-rich gas. A non-premixed combustion model is used for biomass air-steam gasification in the gasifier, and the simulations were carried out by using t...Fluidized bed biomass gasifiers can be employed to produce hydrogen-rich gas. A non-premixed combustion model is used for biomass air-steam gasification in the gasifier, and the simulations were carried out by using the FLUENT 6.0 software. The simulation results are compared with the experimental data. The effects of the steam to biomass ratio (S/B), the equivalence ratio (ER), and the size of biomass particles on the hydrogen yield were studied. Meanwhile, the distributions of hydrogen inside the gasifier at different conditions are also described.展开更多
A series of bifunctional catalysts composed of a component for higher alcohol synthesis (Cu-CoMn oxides, CCM) and an acidic zeolite (SAPO-34, ZSM-5, Y, MCM-41) were prepared for production of liquid hydrocarbon di...A series of bifunctional catalysts composed of a component for higher alcohol synthesis (Cu-CoMn oxides, CCM) and an acidic zeolite (SAPO-34, ZSM-5, Y, MCM-41) were prepared for production of liquid hydrocarbon directly from a bio-syngas through a one-stage pro-cess. The effects of zeolite type, zeolite content, Si/Al ratio and preparation method on catalyst texture and its reaction performance were investigated. Higher selectivities and yields of liquid products were obtained by using bifunctional catalysts. The yields of liquid hydrocarbons decreased in the order CCM-ZSM-5〉CCM-SAPO-34〉CCM-Y〉CCM-MCM-41. CCM-ZSM-5 (20wt%, Si/Al=100) prepared by coprecipitation method displayed the optimal catalytic performance with the highest CO conversion (76%) and yield of liquid products (30%). The catalysts were characterized by N2 adsorption/desorption, NH3-TPD, XRD, and H2-TPR analysis. The results showed that higher speci c surface areas and pore volumes of bifunctional catalysts were achieved by adding zeolites into CuCoMn precursors. Medium pore dimension and moderate acidity in CCM-ZSM-5 were observed, which proba-bly resulted in its excellent reaction performance. Additionally, a higher number of weaker acid sites (weak and/or medium acid sites) were formed by increasing ZSM-5 content in CCM-ZSM-5 or decreasing Si/Al ratio in ZSM-5. It was also seen that metal dispersion was higher and reducibility of metal ions was easier on the CCM-ZSM-5 catalyst prepared by coprecipitation. The higher alcohols-to-hydrocarbon process provides a promising route to hydrocarbon fuels via higher alcohols from syngas or biobased feedstocks.展开更多
A series of Mo-based catalysts prepared by sol-gel method using citric acid as complexant were successfully applied in the high efficient production of mixed alcohols from bio-syngas, derived from the biomass gasifica...A series of Mo-based catalysts prepared by sol-gel method using citric acid as complexant were successfully applied in the high efficient production of mixed alcohols from bio-syngas, derived from the biomass gasification. The Cu1Co1Fe1MO1Zn0.5-6%K catalyst exhibited a higher activity on the space-time yield of mixed alcohols, compared with the other Mobased catalysts. The carbon conversion significantly increases with rising temperature below 340 ℃, but the alcohol selectivity has an opposite trend. The maximum mixed alcohols yield derived from biomass gasification is 494.8 g/(kg catal·h) with the C2+ (C2-C6 higher alcohols) alcohols of 80.4% under the tested conditions. The alcohol distributions are consistent with the Schulz-Flory plots, except methanol. In the alcohols products, the C2+ alcohols (higher alcohols) dominate with a weight ratio of 70%-85%. The Mo-based cata- lysts have been characterized by X-ray diffraction and N2 adsorption/desorption. The clean bio-fules of mixed alcohols derived from bio-syngas with higher octane values could be used as transportation fuels or petrol additives.展开更多
A dual-reactor, assembled with the on-line syngas conditioning and methanol synthesis, was successfully applied for high efficient conversion of rich CO2 bio-oil derived syngas to bio-methanol. In the forepart catalys...A dual-reactor, assembled with the on-line syngas conditioning and methanol synthesis, was successfully applied for high efficient conversion of rich CO2 bio-oil derived syngas to bio-methanol. In the forepart catalyst bed reactor, the catalytic conversion can effectively adjust the rich-CO2 crude bio-syngas into the CO-containing bio-syngas using the CuZnA1Zr catalyst. After the on-line syngas conditioning at 450℃, the CO2/CO ratio in the blo- syngas significantly decreased from 6.3 to 1.2. In the rearward catalyst bed reactor, the conversion of the conditioned bio-syngas to bio-methanol shows the maximum yield about 1.21 kg/(kgcatarh) MeOH with a methanol selectivity of 97.9% at 260 ~C and 5.05 MPa using conventional CuZnA1 catalyst, which is close to the level typically obtained in the conventional methanol synthesis process using natural gas. The influences of temperature, pressure and space velocity on the bio-methanol synthesis were also investigated in detail.展开更多
[ Objective] The study was to investigate the volatile components of secondary metabolites from M. alpine producing arachidonic acid and explore the changes in its metabolic pathway. [ Method] The air above M. alpine ...[ Objective] The study was to investigate the volatile components of secondary metabolites from M. alpine producing arachidonic acid and explore the changes in its metabolic pathway. [ Method] The air above M. alpine broth was extracted by solid-phase microextraction(SPME) during the post-exponential phase of growth and analyzed by GC-MS. [Result] 13 compounds were identified, 12 of which were sesquiterpenes with C15H24 formula and accounting for 99.62% of the complete compounds. Thujopsene-( 12), α-Guaiene and Aristolene were three most sesquiterpenes accounting for 10.66%, 33.69% and 34.85% of total content respectively. It can be sufficiently certified that sesquiterpene metabolic pathway existing in M. alpine. [ Coclusion] Metabolic flux of sesquiterpene pathway increased to improve its mass accumulation, because one or several key enzyme genes mutation in isoprene or sesquiterpene pathway enhanced their activities during induction of mutation from initial strain.展开更多
We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield...We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H20. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.展开更多
In recent years, production of engine fuels and energy from biomass has drawn much interest. In this work, we conducted a novel integrated process for the preparation of bio-hydrogen and bio-fuels using lignocellulosi...In recent years, production of engine fuels and energy from biomass has drawn much interest. In this work, we conducted a novel integrated process for the preparation of bio-hydrogen and bio-fuels using lignocellulosic biomass pyrolysis-oil (bio-oil). The process includes (i) the production of bio-hydrogen or bio-syngas by the catalytic cracking of bio-oil, (ii) the adjustment of bio-syngas, and (iii) the production of bio-fuels by ole nic polymerization (OP) together with Fischer-Tropsch synthesis (FTS). Under the optimal conditions, the yield of bio-hydrogen was 120.9 g H2/(kg bio-oil). The yield of hydrocarbon bio-fuels reached 526.1 g/(kg bio-syngas) by the coupling of OP and FTS. The main reaction pathways (or chemical processes) were discussed based on the products observed and the catalyst property.展开更多
Reburning was applied to Polish automatic coal-fired retort boiler (25 kW).The use of bio-syngas reduced NOx emissions from the boiler by over 25%,below the significant level of 200 mg/m3 .Reburning was carried out us...Reburning was applied to Polish automatic coal-fired retort boiler (25 kW).The use of bio-syngas reduced NOx emissions from the boiler by over 25%,below the significant level of 200 mg/m3 .Reburning was carried out using an integrated system consisting of the boiler and a fixed-bed 60 kW (GazEla) gasification reactor.The process gas was continuously introduced above the coal burner of the boiler.The process parameters of the boiler and the gasifier were also measured and compared with the other units.Characteristic NOx emissions from automatic and manually operated boilers were also presented.展开更多
The electromotive force (e.m.f.) of solid oxide fuel cells using biomass produced gas (BPG) as the fuels is calculated at 700-1,200 K using an in-house computer program, based on thermodynamic equilibrium analysis...The electromotive force (e.m.f.) of solid oxide fuel cells using biomass produced gas (BPG) as the fuels is calculated at 700-1,200 K using an in-house computer program, based on thermodynamic equilibrium analysis. Tour program also predicts the concentration of oxygen in the fuel chamber as well as the concentration of equilibrium species such as H2, CO, CO2 and CH4. Compared with using hydrogen as a fuel, the e.m.f. for cells using BPG as the fuels is relative low and strongly influenced by carbon deposition. To remove carbon deposition, the optimum amount of H2O to add is determined at various operating temperatures. Further the e.m.f, for cells based on yttria stabilized zirconia and doped ceria as electrolytes are compared. The study reveals that when using BPG as fuel, the depression of e.m.f, for a SOFC using doped ceria as electrolyte is relatively small when compared with that using Yttria stabilized zirconia.展开更多
Ni-based catalysts supported by γ-Al_2O_3 were prepared for improving the lower heating value( LHV) of biomass gasification fuel gas through methanation. Prior to the performance tests, the physico-chemical propertie...Ni-based catalysts supported by γ-Al_2O_3 were prepared for improving the lower heating value( LHV) of biomass gasification fuel gas through methanation. Prior to the performance tests, the physico-chemical properties of the catalyst samples were characterized by N_2 isothermal adsorption/desorption, X-ray diffraction( XRD) and a scanning electron microscope( SEM). Afterwards, a series of experiments were carried out to investigate the catalytic performance and the results showthat catalysts with 15% and20% Ni loadings have better methanation catalytic effect than those with 5% and 10% Ni loadings in terms of elevating the LHV of biomass gasification fuel gas. M oreover, controllable influential factors such as the reaction temperature, the H_2/CO ratio and the water content occupy an important position in the methanation of biomass gasification fuel gas. 15 Ni/γ-Al_2O_3 and 20 Ni/γ-Al_2O_3 catalysts have a higher CO conversion and CH_4 selectivity at 350 ℃ and the LHV of biomass gasification fuel gas can be largely increased by 34. 3 % at 350 ℃. Higher H_2/CO ratio and a lower water content are more beneficial for improving the LHV of biomass gasification fuel gas when considering the combination of both CO conversion and CH_4 selectivity. This is due to the fact that a higher H_2/CO ratio and lower water content can increase the extent of the methanation reaction.展开更多
The effect of tea saponins (TS) on rumen fermentation and methane emission was examined using an in vitro gas production technique named Reading Pressure Technique. Three levels of TS addition (0, 0.2, 0.4 mg/ml) were...The effect of tea saponins (TS) on rumen fermentation and methane emission was examined using an in vitro gas production technique named Reading Pressure Technique. Three levels of TS addition (0, 0.2, 0.4 mg/ml) were evaluated in the faunated and defaunated rumen fluid. Compared to the control, TS addition decreased the 24 h gas production in the faunated rumen fluid, but had a minor effect on gas yield in the defaunated rumen fluid. The TS significantly reduced methane production in vitro. In the faunated rumen fluid, 0.2 or 0.4 mg/ml TS decreased the 24 h methane emission by 12.7% or 14.0%, respectively. Rumen fluid pH value was affected neither by TS addition nor by defaunation. The TS addition had only minor effects on volatile fatty acids, but the yield and pattern of volatile fatty acids were greatly affected by defaunation. While the molar proportion of acetate was not affected by defaunation, the propionate was significantly increased and the butyrate significantly decreased. Ammonia-N concentration and microbial protein yield were influenced by TS inclusion and defaunation. Inclusion of 0.4 mg/ml TS increased the microbial protein mass by 18.4% and 13.8% and decreased the ammonia-N concentration by 8.3% and 19.6% in the faunated and defaunated rumen fluid, respectively. Protozoa counts were significantly reduced by TS inclusion. The current study demonstrated the beneficial effect of TS on methane production and rumen fermentation, and indicated that this may be due to the effect of the associated depression on protozoa counts.展开更多
The gasification industries make use of biomass residue as feedstock to produce synthesis gas,but the gasification of this waste biomass generates tons of ash everyday.Performance properties and agglomeration behavior...The gasification industries make use of biomass residue as feedstock to produce synthesis gas,but the gasification of this waste biomass generates tons of ash everyday.Performance properties and agglomeration behavior of corncob ash(CCA) collected from the gasification of corncobs in a pilot-scale gasification station were investigated by using some experimental methods.Based on the chemical composition results,the agglomeration tendency of CCA from combustion and gasification process was also analyzed.Chemical analysis shows that the fly ash is mainly composed of inorganic matters formed by K,Mg,Ca,Na,Fe,Al,S,etc.The agglomeration characteristics indicate that the slagging degree increases with the increase of ashing temperature,and the slagging tendency of these CCA samples from gasification or combustion is different with various slagging indices.All CCA samples from combustion or gasification can cause slagging/fouling problems in thermal conversion systems.The applications of CCA are closely related to its performances,and CCA has the potential to be used in various fields,for example,as a material for ceramic products and activated carbon,as an adsorbent,as a crude fertilizer,and as a structural material.展开更多
Partial oxidation gasification in supercritical water could produce fuel gases(such as H2, CO and CH4) and significantly reduce the energy consumption. In this work, an energetic model was developed to analyze the par...Partial oxidation gasification in supercritical water could produce fuel gases(such as H2, CO and CH4) and significantly reduce the energy consumption. In this work, an energetic model was developed to analyze the partial oxidative gasification of biomass(glucose and lignin) in supercritical water and the related key factors on which gasification under autothermal condition depended upon. The results indicated that the oxidant equivalent ratio(ER) should be over 0.3 as the concern about energy balance but less than 0.6 as the concern about fuel gas production. Feedstocks such as glucose and lignin also had different energy recovery efficiency. For materials which can be efficiently gasified, the partial oxidation might be a way for energy based on the combustion of fuel gases. Aromatic materials such as lignin and coal are more potential since partial oxidation could produce similar amount of fuel gases as direct gasification and offer additional energy. Energy recovered pays a key role to achieve an autothermal process. Keeping heat exchanger efficiency above 80% and heat transfer coefficient below15 k J·s-1is necessary to maintain the autothermal status. The results also indicated that the biomass loading should be above 15% but under 20% for an autothermal gasification, since the increase of biomass loading could improve the energy supplied but decrease the efficiency of gasification and gaseous yields. In general,some specific conditions exist among different materials.展开更多
Producer gas through gasification of biomass can be used as an alternate fuel in rural areas due to high potential of biomass resources in India.Experiments were conducted to study the performance of a diesel engine(f...Producer gas through gasification of biomass can be used as an alternate fuel in rural areas due to high potential of biomass resources in India.Experiments were conducted to study the performance of a diesel engine(four stroke,single cylinder,5.25 kW) with respect to its thermal efficiency,specific fuel consumption and diesel substitution by use of diesel alone and producer gas-cum-diesel(dual fuel mode).Three types of biomass,i.e.wood chips,pigeon pea stalks and corn cobs were used for generation of producer gas.A producer gas system consisting of a downdraft gasifier,a cooling cum cleaning unit,a filtering unit and a gas air mixing device was designed,fabricated and used to power a 5.25 kW diesel engine on dual fuel mode.Performance of the engine was reported by keeping biomass moisture contents as 8%,12%,16%,and 21%,engine speed as 1 600 r/min and with variable engine loads.The average value of thermal efficiency on dual fuel mode was found slightly lower than that of diesel mode.The specific diesel consumption was found to be 60%-64% less in dual fuel mode than that in diesel mode for the same amount of energy output.The average diesel substitution of 74% was observed with wood chips followed by corn cobs(78%) and pigeon pea stalks(82%).Based on the performance studied,the producer gas may be used as a substitute or as supplementary fuel for diesel conservation,particularly for stationary engines in agricultural operations in the farm.展开更多
India is having more than 500,000 villages of which about 85% have been electrified. But as per RGGVY (Rejiv Gandhi Grammen Vidyutikaran Yojana), the rate of village electrification is much lower as household connec...India is having more than 500,000 villages of which about 85% have been electrified. But as per RGGVY (Rejiv Gandhi Grammen Vidyutikaran Yojana), the rate of village electrification is much lower as household connectivity has been fairly low. The rest 15% villages and a larger proportion of households have to be electrified. Villages have been a major concern as cost of electrification is fairly high. The most favored alternative to any kind of users is generation of electricity from diesel generating sets and renewable sources of energy. But the capital cost of renewable energy equipments is fairly high. Gradually, there is a reduction in the prices of these systems due to availability of better technological options and they are becoming competitive to grid electricity. In this paper, an attempt has been made to calculate the cost of production of electricity from stand-alone, off-grid devices biomass gasifiers (both dual fuel and pure gas type) and compare with that of diesel generating sets by using the concept of LCC (life cycle costing) and Homer software. It is found that the cost of per unit electricity generation (kWh) has been always the lowest in comparison to diesel generating sets even if the price of biomass increases to some extent.展开更多
A laboratory scale downdraft biomass gasifier was designed to deliver a mechanical power of 4 kW and thermal power of about 15 kW. The gasifier was manufactured as a single piece having a water seal and cover. The gas...A laboratory scale downdraft biomass gasifier was designed to deliver a mechanical power of 4 kW and thermal power of about 15 kW. The gasifier was manufactured as a single piece having a water seal and cover. The gasifier was tested in natural downdraft and forced downdraft mode. Ignition of the fuel beneath the grate, during natural downdraft mode, using wood shavings as fuel, produced gas which burned with a blue flame for 15 minutes. Ignition at the throat, using either palm kernel shells or wood shavings, during the natural downdraft mode, the gasifier did not produce syngas. During the forced downdraft mode, fuel was ignited at the throat. Gasification was successful with the palm kernel shells, during forced downdraft, which produced gas which burned steadily with luminous flame for 15 minutes per kilogram of biomass fed. However, wood shavings experienced some bridging problems during the forced downdraft mode of operation. The fuel conversion rate of the gasifier, when using palm kernel shells as fuel in forced downdraft mode, was 4 kg/h. Forced downdraft mode of operation yielded better results and is the preferred operation of the gasifier.展开更多
A new biomass-gasification power plant, of medium-size downdraft type, is presented and discussed in its design features and performance characteristics. Its configuration and overall dimensions, initially conceived f...A new biomass-gasification power plant, of medium-size downdraft type, is presented and discussed in its design features and performance characteristics. Its configuration and overall dimensions, initially conceived for 800 kW, were recently re-tuned, from a functional point of view and on the base of a parallel theoretical analysis, by decreasing to about 400 kW the former nominal power level. This provision, jointly with the basic design choice of adopting a long and amply dimensioned inlet-biomass thermal pretreatment section, turned out quite effective in achieving high gasification temperatures and a low-tar content in the produced gas at fuel-to-air ratios well below the usually imposed ones, to the advantage of the heat value of the product-gas. The paper discusses the numerical analysis results which helped to properly re-adjust the operational parameters of the gasifier and then presents the experimental performance data of the overall power plant including biomass consumption, gasification temperatures, gas production, composition and pollutants content, cold-gas conversion efficiency and global electric efficiency. Special care is devoted to investigating the issue of a significant production of carbon-containing particulate matter in the product gas, which turns out made up of char and fixed carbon much more than of tar species.展开更多
基金Project(52022019)supported by the National Natural Science Foundation of China。
文摘The magnetization reduction of hematite using biomass waste can effectively utilize waste and reduce CO_(2) emission to achieve the goals of carbon peaking and carbon neutrality.The effects of temperatures on suspension magnetization roasting of hematite using biomass waste for evolved gases have been investigated using TG-FTIR,Py-GC/MS and gas composition analyzer.The mixture reduction process is divided into four stages.In the temperature range of 200-450℃ for mixture,the release of CO_(2),acids,and ketones is dominated in gases products.The yield and concentration of small molecules reducing gases increase when the temperature increases from 450 to 900℃.At 700℃,the volume concentrations of CO,H_(2) and CH_(4) peak at 8.91%,8.90% and 4.91%,respectively.During the suspension magnetization roasting process,an optimal iron concentrate with an iron grade of 70.86%,a recovery of 98.66% and a magnetic conversion of 45.70% is obtained at 700℃.Therefore,the magnetization reduction could react greatly in the temperature range of 600 to 700℃ owing to the suitable reducing gases.This study shows a detail gaseous evolution of roasting temperature and provides a new insight for studying the reduction process of hematite using biomass waste.
基金ACKNOWLEDGM ENTS This work was supported by the National Natural Science Foundation of China (No.51006110, No.51276183, and No.51036006), the National Natural Research Foundation of China/Japan Science and Technology Agency (No.51161140331), and National Key Basic Research Program 973 Project Founded by MOST of China (No.2013CB228105).
文摘NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the following DTO, were also investigated using biosyngas as feed gas over Cu/Zn/A1/HZSM-5 and the optimized 2%NiSAPO-34/HZSM- 5. The results indicated that adding 2%Ni to SAPO-34 did not change its topology structure, but resulted in the forming of the moderately strong acidity with decreasing acid amounts, which slightly enhanced DME conversion activity and C2=-C3= selectiw ity. Mechanically mixing 2%NiSAPO-34 with HZSM-5 at the weight ratio of 3.0 further prolonged DME conversion activity to be more than 3 h, which was due to the stable acid sites from HZSM-5. The highest selectivity to light olefins of 90.8% was achieved at 2 h time on stream. The application of the optimized 2%NiSAPO-34/HZSM-5 in the second-stage reactor for DTO reaction showed that the catalytic activity was steady for more than 5 h and light olefin yield was as high as 84.6 g/m3syngas when the biosyngas (H2/CO/CO2/N2/CH4=41.5/26.9/14.2/14.6/2.89, vol%) with low H/C ratio of 1.0 was used as feed gas.
文摘Fluidized bed biomass gasifiers can be employed to produce hydrogen-rich gas. A non-premixed combustion model is used for biomass air-steam gasification in the gasifier, and the simulations were carried out by using the FLUENT 6.0 software. The simulation results are compared with the experimental data. The effects of the steam to biomass ratio (S/B), the equivalence ratio (ER), and the size of biomass particles on the hydrogen yield were studied. Meanwhile, the distributions of hydrogen inside the gasifier at different conditions are also described.
文摘A series of bifunctional catalysts composed of a component for higher alcohol synthesis (Cu-CoMn oxides, CCM) and an acidic zeolite (SAPO-34, ZSM-5, Y, MCM-41) were prepared for production of liquid hydrocarbon directly from a bio-syngas through a one-stage pro-cess. The effects of zeolite type, zeolite content, Si/Al ratio and preparation method on catalyst texture and its reaction performance were investigated. Higher selectivities and yields of liquid products were obtained by using bifunctional catalysts. The yields of liquid hydrocarbons decreased in the order CCM-ZSM-5〉CCM-SAPO-34〉CCM-Y〉CCM-MCM-41. CCM-ZSM-5 (20wt%, Si/Al=100) prepared by coprecipitation method displayed the optimal catalytic performance with the highest CO conversion (76%) and yield of liquid products (30%). The catalysts were characterized by N2 adsorption/desorption, NH3-TPD, XRD, and H2-TPR analysis. The results showed that higher speci c surface areas and pore volumes of bifunctional catalysts were achieved by adding zeolites into CuCoMn precursors. Medium pore dimension and moderate acidity in CCM-ZSM-5 were observed, which proba-bly resulted in its excellent reaction performance. Additionally, a higher number of weaker acid sites (weak and/or medium acid sites) were formed by increasing ZSM-5 content in CCM-ZSM-5 or decreasing Si/Al ratio in ZSM-5. It was also seen that metal dispersion was higher and reducibility of metal ions was easier on the CCM-ZSM-5 catalyst prepared by coprecipitation. The higher alcohols-to-hydrocarbon process provides a promising route to hydrocarbon fuels via higher alcohols from syngas or biobased feedstocks.
基金This work is supported Technical Research and by the National High Development Program (No.2009AA05Z435), the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), and the National Natural Science Foundation of China (No.50772107).
文摘A series of Mo-based catalysts prepared by sol-gel method using citric acid as complexant were successfully applied in the high efficient production of mixed alcohols from bio-syngas, derived from the biomass gasification. The Cu1Co1Fe1MO1Zn0.5-6%K catalyst exhibited a higher activity on the space-time yield of mixed alcohols, compared with the other Mobased catalysts. The carbon conversion significantly increases with rising temperature below 340 ℃, but the alcohol selectivity has an opposite trend. The maximum mixed alcohols yield derived from biomass gasification is 494.8 g/(kg catal·h) with the C2+ (C2-C6 higher alcohols) alcohols of 80.4% under the tested conditions. The alcohol distributions are consistent with the Schulz-Flory plots, except methanol. In the alcohols products, the C2+ alcohols (higher alcohols) dominate with a weight ratio of 70%-85%. The Mo-based cata- lysts have been characterized by X-ray diffraction and N2 adsorption/desorption. The clean bio-fules of mixed alcohols derived from bio-syngas with higher octane values could be used as transportation fuels or petrol additives.
基金This work was supported by the National High Tech Research and Development Program (No.2009AA05Z435), the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), and the National Natural Science Foundation of China (No.50772107).
文摘A dual-reactor, assembled with the on-line syngas conditioning and methanol synthesis, was successfully applied for high efficient conversion of rich CO2 bio-oil derived syngas to bio-methanol. In the forepart catalyst bed reactor, the catalytic conversion can effectively adjust the rich-CO2 crude bio-syngas into the CO-containing bio-syngas using the CuZnA1Zr catalyst. After the on-line syngas conditioning at 450℃, the CO2/CO ratio in the blo- syngas significantly decreased from 6.3 to 1.2. In the rearward catalyst bed reactor, the conversion of the conditioned bio-syngas to bio-methanol shows the maximum yield about 1.21 kg/(kgcatarh) MeOH with a methanol selectivity of 97.9% at 260 ~C and 5.05 MPa using conventional CuZnA1 catalyst, which is close to the level typically obtained in the conventional methanol synthesis process using natural gas. The influences of temperature, pressure and space velocity on the bio-methanol synthesis were also investigated in detail.
基金Supported by the National Natural Science Foundation of China(20606018)the National Basic Research Program (also called 973Program)(2007CB707805)the Six Projects Sponsoring Talent Summits of Jiangsu Province~~
文摘[ Objective] The study was to investigate the volatile components of secondary metabolites from M. alpine producing arachidonic acid and explore the changes in its metabolic pathway. [ Method] The air above M. alpine broth was extracted by solid-phase microextraction(SPME) during the post-exponential phase of growth and analyzed by GC-MS. [Result] 13 compounds were identified, 12 of which were sesquiterpenes with C15H24 formula and accounting for 99.62% of the complete compounds. Thujopsene-( 12), α-Guaiene and Aristolene were three most sesquiterpenes accounting for 10.66%, 33.69% and 34.85% of total content respectively. It can be sufficiently certified that sesquiterpene metabolic pathway existing in M. alpine. [ Coclusion] Metabolic flux of sesquiterpene pathway increased to improve its mass accumulation, because one or several key enzyme genes mutation in isoprene or sesquiterpene pathway enhanced their activities during induction of mutation from initial strain.
基金This work was supported by the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), the National High Tech Research and Development Program (No.2009AA05Z435), and the National Natural Science Foundation of China (No.50772107).
文摘We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H20. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.
文摘In recent years, production of engine fuels and energy from biomass has drawn much interest. In this work, we conducted a novel integrated process for the preparation of bio-hydrogen and bio-fuels using lignocellulosic biomass pyrolysis-oil (bio-oil). The process includes (i) the production of bio-hydrogen or bio-syngas by the catalytic cracking of bio-oil, (ii) the adjustment of bio-syngas, and (iii) the production of bio-fuels by ole nic polymerization (OP) together with Fischer-Tropsch synthesis (FTS). Under the optimal conditions, the yield of bio-hydrogen was 120.9 g H2/(kg bio-oil). The yield of hydrocarbon bio-fuels reached 526.1 g/(kg bio-syngas) by the coupling of OP and FTS. The main reaction pathways (or chemical processes) were discussed based on the products observed and the catalyst property.
基金Projects(DEC-2011/01/B/ST8/07394,DEC-2011/01/D/ST8/07399)supported by the Polish National Centre for Science(NCN)
文摘Reburning was applied to Polish automatic coal-fired retort boiler (25 kW).The use of bio-syngas reduced NOx emissions from the boiler by over 25%,below the significant level of 200 mg/m3 .Reburning was carried out using an integrated system consisting of the boiler and a fixed-bed 60 kW (GazEla) gasification reactor.The process gas was continuously introduced above the coal burner of the boiler.The process parameters of the boiler and the gasifier were also measured and compared with the other units.Characteristic NOx emissions from automatic and manually operated boilers were also presented.
基金V. ACKN0WLEDGMENT This work was supported by the National Natural Science Foundation of China (No.50372066 and No.50332040).
文摘The electromotive force (e.m.f.) of solid oxide fuel cells using biomass produced gas (BPG) as the fuels is calculated at 700-1,200 K using an in-house computer program, based on thermodynamic equilibrium analysis. Tour program also predicts the concentration of oxygen in the fuel chamber as well as the concentration of equilibrium species such as H2, CO, CO2 and CH4. Compared with using hydrogen as a fuel, the e.m.f. for cells using BPG as the fuels is relative low and strongly influenced by carbon deposition. To remove carbon deposition, the optimum amount of H2O to add is determined at various operating temperatures. Further the e.m.f, for cells based on yttria stabilized zirconia and doped ceria as electrolytes are compared. The study reveals that when using BPG as fuel, the depression of e.m.f, for a SOFC using doped ceria as electrolyte is relatively small when compared with that using Yttria stabilized zirconia.
基金The International S&T Cooperation Program of China(No.2014DFE70150)
文摘Ni-based catalysts supported by γ-Al_2O_3 were prepared for improving the lower heating value( LHV) of biomass gasification fuel gas through methanation. Prior to the performance tests, the physico-chemical properties of the catalyst samples were characterized by N_2 isothermal adsorption/desorption, X-ray diffraction( XRD) and a scanning electron microscope( SEM). Afterwards, a series of experiments were carried out to investigate the catalytic performance and the results showthat catalysts with 15% and20% Ni loadings have better methanation catalytic effect than those with 5% and 10% Ni loadings in terms of elevating the LHV of biomass gasification fuel gas. M oreover, controllable influential factors such as the reaction temperature, the H_2/CO ratio and the water content occupy an important position in the methanation of biomass gasification fuel gas. 15 Ni/γ-Al_2O_3 and 20 Ni/γ-Al_2O_3 catalysts have a higher CO conversion and CH_4 selectivity at 350 ℃ and the LHV of biomass gasification fuel gas can be largely increased by 34. 3 % at 350 ℃. Higher H_2/CO ratio and a lower water content are more beneficial for improving the LHV of biomass gasification fuel gas when considering the combination of both CO conversion and CH_4 selectivity. This is due to the fact that a higher H_2/CO ratio and lower water content can increase the extent of the methanation reaction.
基金Project (No. 12665/R0) supported partly by Co-ordinated ResearchProjects from Joint FAO/IAEA Division, IAEA
文摘The effect of tea saponins (TS) on rumen fermentation and methane emission was examined using an in vitro gas production technique named Reading Pressure Technique. Three levels of TS addition (0, 0.2, 0.4 mg/ml) were evaluated in the faunated and defaunated rumen fluid. Compared to the control, TS addition decreased the 24 h gas production in the faunated rumen fluid, but had a minor effect on gas yield in the defaunated rumen fluid. The TS significantly reduced methane production in vitro. In the faunated rumen fluid, 0.2 or 0.4 mg/ml TS decreased the 24 h methane emission by 12.7% or 14.0%, respectively. Rumen fluid pH value was affected neither by TS addition nor by defaunation. The TS addition had only minor effects on volatile fatty acids, but the yield and pattern of volatile fatty acids were greatly affected by defaunation. While the molar proportion of acetate was not affected by defaunation, the propionate was significantly increased and the butyrate significantly decreased. Ammonia-N concentration and microbial protein yield were influenced by TS inclusion and defaunation. Inclusion of 0.4 mg/ml TS increased the microbial protein mass by 18.4% and 13.8% and decreased the ammonia-N concentration by 8.3% and 19.6% in the faunated and defaunated rumen fluid, respectively. Protozoa counts were significantly reduced by TS inclusion. The current study demonstrated the beneficial effect of TS on methane production and rumen fermentation, and indicated that this may be due to the effect of the associated depression on protozoa counts.
基金Project(2013020137)supported by the Natural Science Foundation of Liaoning Province,ChinaProject(2015-36)supported by Rural Energy Comprehensive Construction Foundation of the Ministry of Agriculture,China
文摘The gasification industries make use of biomass residue as feedstock to produce synthesis gas,but the gasification of this waste biomass generates tons of ash everyday.Performance properties and agglomeration behavior of corncob ash(CCA) collected from the gasification of corncobs in a pilot-scale gasification station were investigated by using some experimental methods.Based on the chemical composition results,the agglomeration tendency of CCA from combustion and gasification process was also analyzed.Chemical analysis shows that the fly ash is mainly composed of inorganic matters formed by K,Mg,Ca,Na,Fe,Al,S,etc.The agglomeration characteristics indicate that the slagging degree increases with the increase of ashing temperature,and the slagging tendency of these CCA samples from gasification or combustion is different with various slagging indices.All CCA samples from combustion or gasification can cause slagging/fouling problems in thermal conversion systems.The applications of CCA are closely related to its performances,and CCA has the potential to be used in various fields,for example,as a material for ceramic products and activated carbon,as an adsorbent,as a crude fertilizer,and as a structural material.
基金Supported by the National Natural Science Foundation of China(21037001,21076091,21307049)the National Key Project for Basic Research of China(2008BAC32B06-1)+2 种基金Yunnan Province High-tech Talent Introduction Project(2010CI110)the Important Yunnan Province's Science&Technology Specific Project(2012ZB002)the Yunnan Science Foundation(2013FZ032,14118583)
文摘Partial oxidation gasification in supercritical water could produce fuel gases(such as H2, CO and CH4) and significantly reduce the energy consumption. In this work, an energetic model was developed to analyze the partial oxidative gasification of biomass(glucose and lignin) in supercritical water and the related key factors on which gasification under autothermal condition depended upon. The results indicated that the oxidant equivalent ratio(ER) should be over 0.3 as the concern about energy balance but less than 0.6 as the concern about fuel gas production. Feedstocks such as glucose and lignin also had different energy recovery efficiency. For materials which can be efficiently gasified, the partial oxidation might be a way for energy based on the combustion of fuel gases. Aromatic materials such as lignin and coal are more potential since partial oxidation could produce similar amount of fuel gases as direct gasification and offer additional energy. Energy recovered pays a key role to achieve an autothermal process. Keeping heat exchanger efficiency above 80% and heat transfer coefficient below15 k J·s-1is necessary to maintain the autothermal status. The results also indicated that the biomass loading should be above 15% but under 20% for an autothermal gasification, since the increase of biomass loading could improve the energy supplied but decrease the efficiency of gasification and gaseous yields. In general,some specific conditions exist among different materials.
文摘Producer gas through gasification of biomass can be used as an alternate fuel in rural areas due to high potential of biomass resources in India.Experiments were conducted to study the performance of a diesel engine(four stroke,single cylinder,5.25 kW) with respect to its thermal efficiency,specific fuel consumption and diesel substitution by use of diesel alone and producer gas-cum-diesel(dual fuel mode).Three types of biomass,i.e.wood chips,pigeon pea stalks and corn cobs were used for generation of producer gas.A producer gas system consisting of a downdraft gasifier,a cooling cum cleaning unit,a filtering unit and a gas air mixing device was designed,fabricated and used to power a 5.25 kW diesel engine on dual fuel mode.Performance of the engine was reported by keeping biomass moisture contents as 8%,12%,16%,and 21%,engine speed as 1 600 r/min and with variable engine loads.The average value of thermal efficiency on dual fuel mode was found slightly lower than that of diesel mode.The specific diesel consumption was found to be 60%-64% less in dual fuel mode than that in diesel mode for the same amount of energy output.The average diesel substitution of 74% was observed with wood chips followed by corn cobs(78%) and pigeon pea stalks(82%).Based on the performance studied,the producer gas may be used as a substitute or as supplementary fuel for diesel conservation,particularly for stationary engines in agricultural operations in the farm.
文摘India is having more than 500,000 villages of which about 85% have been electrified. But as per RGGVY (Rejiv Gandhi Grammen Vidyutikaran Yojana), the rate of village electrification is much lower as household connectivity has been fairly low. The rest 15% villages and a larger proportion of households have to be electrified. Villages have been a major concern as cost of electrification is fairly high. The most favored alternative to any kind of users is generation of electricity from diesel generating sets and renewable sources of energy. But the capital cost of renewable energy equipments is fairly high. Gradually, there is a reduction in the prices of these systems due to availability of better technological options and they are becoming competitive to grid electricity. In this paper, an attempt has been made to calculate the cost of production of electricity from stand-alone, off-grid devices biomass gasifiers (both dual fuel and pure gas type) and compare with that of diesel generating sets by using the concept of LCC (life cycle costing) and Homer software. It is found that the cost of per unit electricity generation (kWh) has been always the lowest in comparison to diesel generating sets even if the price of biomass increases to some extent.
文摘A laboratory scale downdraft biomass gasifier was designed to deliver a mechanical power of 4 kW and thermal power of about 15 kW. The gasifier was manufactured as a single piece having a water seal and cover. The gasifier was tested in natural downdraft and forced downdraft mode. Ignition of the fuel beneath the grate, during natural downdraft mode, using wood shavings as fuel, produced gas which burned with a blue flame for 15 minutes. Ignition at the throat, using either palm kernel shells or wood shavings, during the natural downdraft mode, the gasifier did not produce syngas. During the forced downdraft mode, fuel was ignited at the throat. Gasification was successful with the palm kernel shells, during forced downdraft, which produced gas which burned steadily with luminous flame for 15 minutes per kilogram of biomass fed. However, wood shavings experienced some bridging problems during the forced downdraft mode of operation. The fuel conversion rate of the gasifier, when using palm kernel shells as fuel in forced downdraft mode, was 4 kg/h. Forced downdraft mode of operation yielded better results and is the preferred operation of the gasifier.
文摘A new biomass-gasification power plant, of medium-size downdraft type, is presented and discussed in its design features and performance characteristics. Its configuration and overall dimensions, initially conceived for 800 kW, were recently re-tuned, from a functional point of view and on the base of a parallel theoretical analysis, by decreasing to about 400 kW the former nominal power level. This provision, jointly with the basic design choice of adopting a long and amply dimensioned inlet-biomass thermal pretreatment section, turned out quite effective in achieving high gasification temperatures and a low-tar content in the produced gas at fuel-to-air ratios well below the usually imposed ones, to the advantage of the heat value of the product-gas. The paper discusses the numerical analysis results which helped to properly re-adjust the operational parameters of the gasifier and then presents the experimental performance data of the overall power plant including biomass consumption, gasification temperatures, gas production, composition and pollutants content, cold-gas conversion efficiency and global electric efficiency. Special care is devoted to investigating the issue of a significant production of carbon-containing particulate matter in the product gas, which turns out made up of char and fixed carbon much more than of tar species.