A series of Mo-based catalysts prepared by sol-gel method using citric acid as complexant were successfully applied in the high efficient production of mixed alcohols from bio-syngas, derived from the biomass gasifica...A series of Mo-based catalysts prepared by sol-gel method using citric acid as complexant were successfully applied in the high efficient production of mixed alcohols from bio-syngas, derived from the biomass gasification. The Cu1Co1Fe1MO1Zn0.5-6%K catalyst exhibited a higher activity on the space-time yield of mixed alcohols, compared with the other Mobased catalysts. The carbon conversion significantly increases with rising temperature below 340 ℃, but the alcohol selectivity has an opposite trend. The maximum mixed alcohols yield derived from biomass gasification is 494.8 g/(kg catal·h) with the C2+ (C2-C6 higher alcohols) alcohols of 80.4% under the tested conditions. The alcohol distributions are consistent with the Schulz-Flory plots, except methanol. In the alcohols products, the C2+ alcohols (higher alcohols) dominate with a weight ratio of 70%-85%. The Mo-based cata- lysts have been characterized by X-ray diffraction and N2 adsorption/desorption. The clean bio-fules of mixed alcohols derived from bio-syngas with higher octane values could be used as transportation fuels or petrol additives.展开更多
Ni-based catalysts supported by γ-Al_2O_3 were prepared for improving the lower heating value( LHV) of biomass gasification fuel gas through methanation. Prior to the performance tests, the physico-chemical propertie...Ni-based catalysts supported by γ-Al_2O_3 were prepared for improving the lower heating value( LHV) of biomass gasification fuel gas through methanation. Prior to the performance tests, the physico-chemical properties of the catalyst samples were characterized by N_2 isothermal adsorption/desorption, X-ray diffraction( XRD) and a scanning electron microscope( SEM). Afterwards, a series of experiments were carried out to investigate the catalytic performance and the results showthat catalysts with 15% and20% Ni loadings have better methanation catalytic effect than those with 5% and 10% Ni loadings in terms of elevating the LHV of biomass gasification fuel gas. M oreover, controllable influential factors such as the reaction temperature, the H_2/CO ratio and the water content occupy an important position in the methanation of biomass gasification fuel gas. 15 Ni/γ-Al_2O_3 and 20 Ni/γ-Al_2O_3 catalysts have a higher CO conversion and CH_4 selectivity at 350 ℃ and the LHV of biomass gasification fuel gas can be largely increased by 34. 3 % at 350 ℃. Higher H_2/CO ratio and a lower water content are more beneficial for improving the LHV of biomass gasification fuel gas when considering the combination of both CO conversion and CH_4 selectivity. This is due to the fact that a higher H_2/CO ratio and lower water content can increase the extent of the methanation reaction.展开更多
The glucose mass transfer in the biosynthesis of succinic acid with immobilized Actinobacillus succinogenes cells has been comparatively analyzed for a bioreactor with mobile bed vs. a stationary basket bioreactor. Th...The glucose mass transfer in the biosynthesis of succinic acid with immobilized Actinobacillus succinogenes cells has been comparatively analyzed for a bioreactor with mobile bed vs. a stationary basket bioreactor. The process has been considered to occur under substrate and product inhibitory effects. The results indicated that the bioreactor with mobile bed is more efficient for biocatalyst particles with a diameter over 3 mm, while the basket bioreactor is more efficient for smaller biocatalyst particles and basket bed thickness below 5 mm. The performances of both configurations of immobilized A. succinogenes cell beds were found to be superior to the column packed bed bioreactor.展开更多
基金This work is supported Technical Research and by the National High Development Program (No.2009AA05Z435), the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), and the National Natural Science Foundation of China (No.50772107).
文摘A series of Mo-based catalysts prepared by sol-gel method using citric acid as complexant were successfully applied in the high efficient production of mixed alcohols from bio-syngas, derived from the biomass gasification. The Cu1Co1Fe1MO1Zn0.5-6%K catalyst exhibited a higher activity on the space-time yield of mixed alcohols, compared with the other Mobased catalysts. The carbon conversion significantly increases with rising temperature below 340 ℃, but the alcohol selectivity has an opposite trend. The maximum mixed alcohols yield derived from biomass gasification is 494.8 g/(kg catal·h) with the C2+ (C2-C6 higher alcohols) alcohols of 80.4% under the tested conditions. The alcohol distributions are consistent with the Schulz-Flory plots, except methanol. In the alcohols products, the C2+ alcohols (higher alcohols) dominate with a weight ratio of 70%-85%. The Mo-based cata- lysts have been characterized by X-ray diffraction and N2 adsorption/desorption. The clean bio-fules of mixed alcohols derived from bio-syngas with higher octane values could be used as transportation fuels or petrol additives.
基金The International S&T Cooperation Program of China(No.2014DFE70150)
文摘Ni-based catalysts supported by γ-Al_2O_3 were prepared for improving the lower heating value( LHV) of biomass gasification fuel gas through methanation. Prior to the performance tests, the physico-chemical properties of the catalyst samples were characterized by N_2 isothermal adsorption/desorption, X-ray diffraction( XRD) and a scanning electron microscope( SEM). Afterwards, a series of experiments were carried out to investigate the catalytic performance and the results showthat catalysts with 15% and20% Ni loadings have better methanation catalytic effect than those with 5% and 10% Ni loadings in terms of elevating the LHV of biomass gasification fuel gas. M oreover, controllable influential factors such as the reaction temperature, the H_2/CO ratio and the water content occupy an important position in the methanation of biomass gasification fuel gas. 15 Ni/γ-Al_2O_3 and 20 Ni/γ-Al_2O_3 catalysts have a higher CO conversion and CH_4 selectivity at 350 ℃ and the LHV of biomass gasification fuel gas can be largely increased by 34. 3 % at 350 ℃. Higher H_2/CO ratio and a lower water content are more beneficial for improving the LHV of biomass gasification fuel gas when considering the combination of both CO conversion and CH_4 selectivity. This is due to the fact that a higher H_2/CO ratio and lower water content can increase the extent of the methanation reaction.
基金Supported by the Grant PN-II-PT-PCCA-2011-3.1-1268 authorized by The National Council for Scientific Research-Executive Unit for Financing Higher Education,Research,Development and Innovation(CNCS-UEFISCDI)
文摘The glucose mass transfer in the biosynthesis of succinic acid with immobilized Actinobacillus succinogenes cells has been comparatively analyzed for a bioreactor with mobile bed vs. a stationary basket bioreactor. The process has been considered to occur under substrate and product inhibitory effects. The results indicated that the bioreactor with mobile bed is more efficient for biocatalyst particles with a diameter over 3 mm, while the basket bioreactor is more efficient for smaller biocatalyst particles and basket bed thickness below 5 mm. The performances of both configurations of immobilized A. succinogenes cell beds were found to be superior to the column packed bed bioreactor.