The effect of tea saponins (TS) on rumen fermentation and methane emission was examined using an in vitro gas production technique named Reading Pressure Technique. Three levels of TS addition (0, 0.2, 0.4 mg/ml) were...The effect of tea saponins (TS) on rumen fermentation and methane emission was examined using an in vitro gas production technique named Reading Pressure Technique. Three levels of TS addition (0, 0.2, 0.4 mg/ml) were evaluated in the faunated and defaunated rumen fluid. Compared to the control, TS addition decreased the 24 h gas production in the faunated rumen fluid, but had a minor effect on gas yield in the defaunated rumen fluid. The TS significantly reduced methane production in vitro. In the faunated rumen fluid, 0.2 or 0.4 mg/ml TS decreased the 24 h methane emission by 12.7% or 14.0%, respectively. Rumen fluid pH value was affected neither by TS addition nor by defaunation. The TS addition had only minor effects on volatile fatty acids, but the yield and pattern of volatile fatty acids were greatly affected by defaunation. While the molar proportion of acetate was not affected by defaunation, the propionate was significantly increased and the butyrate significantly decreased. Ammonia-N concentration and microbial protein yield were influenced by TS inclusion and defaunation. Inclusion of 0.4 mg/ml TS increased the microbial protein mass by 18.4% and 13.8% and decreased the ammonia-N concentration by 8.3% and 19.6% in the faunated and defaunated rumen fluid, respectively. Protozoa counts were significantly reduced by TS inclusion. The current study demonstrated the beneficial effect of TS on methane production and rumen fermentation, and indicated that this may be due to the effect of the associated depression on protozoa counts.展开更多
Cassava is currently being investigated for biogas production in South Africa as it offers multiple benefits such as high yields of starch and total dry matter. The chemical constituents of the cassava biomass were de...Cassava is currently being investigated for biogas production in South Africa as it offers multiple benefits such as high yields of starch and total dry matter. The chemical constituents of the cassava biomass were determined using standard methods. Using a locally fabricated laboratory batch fermenter, anaerobic digestion was carried out in a 25 L capacity digester maintained at 36 ± 0.5 ℃. Pre-treatment of the cassava biomass with spoilage fungi, Aspergillus niger and PeniciUium species yielded large amounts of fermentable sugars for digestion. Cassava slurry was made and mixed with zebra droppings (2:1 v/v) and loaded into the digester of 20 L working volume. Analysis results showed an increase in most nutrients after pretreatment except for starch which decreased from 76% to 60% as a result of its hydrolysis to fermentable sugars by the spoilage fungi. Theoretical biogas yields were between 0.71 nm3 and 0.75 nm^3 per kg VS (volatile solids) destroyed while the total biogas yields of between 250 nm^3 and 300 nm^3 per kg VS fed into the digester was obtained after 20 days residence time. Cassava is not yet a staple food in some BRICs countries like South Africa and the peels and other by-products of its processing are equally suitable for energy production. The use of cassava will be an alternative feedstock strategy for several rural biogas projects running with cow dungs inside South Africa. In addition, opportunities exist for decentralized, cheaper and socially advantageous bioenergy production from cassava considering that fuel and electricity needs are not satisfied in many rural areas. Finally, the incorporation of cassava anaerobic digestion facility at different scales will deliver additional benefits like the incorporation of nutrients and residual carbon into the land as fertilizer.展开更多
基金Project (No. 12665/R0) supported partly by Co-ordinated ResearchProjects from Joint FAO/IAEA Division, IAEA
文摘The effect of tea saponins (TS) on rumen fermentation and methane emission was examined using an in vitro gas production technique named Reading Pressure Technique. Three levels of TS addition (0, 0.2, 0.4 mg/ml) were evaluated in the faunated and defaunated rumen fluid. Compared to the control, TS addition decreased the 24 h gas production in the faunated rumen fluid, but had a minor effect on gas yield in the defaunated rumen fluid. The TS significantly reduced methane production in vitro. In the faunated rumen fluid, 0.2 or 0.4 mg/ml TS decreased the 24 h methane emission by 12.7% or 14.0%, respectively. Rumen fluid pH value was affected neither by TS addition nor by defaunation. The TS addition had only minor effects on volatile fatty acids, but the yield and pattern of volatile fatty acids were greatly affected by defaunation. While the molar proportion of acetate was not affected by defaunation, the propionate was significantly increased and the butyrate significantly decreased. Ammonia-N concentration and microbial protein yield were influenced by TS inclusion and defaunation. Inclusion of 0.4 mg/ml TS increased the microbial protein mass by 18.4% and 13.8% and decreased the ammonia-N concentration by 8.3% and 19.6% in the faunated and defaunated rumen fluid, respectively. Protozoa counts were significantly reduced by TS inclusion. The current study demonstrated the beneficial effect of TS on methane production and rumen fermentation, and indicated that this may be due to the effect of the associated depression on protozoa counts.
文摘Cassava is currently being investigated for biogas production in South Africa as it offers multiple benefits such as high yields of starch and total dry matter. The chemical constituents of the cassava biomass were determined using standard methods. Using a locally fabricated laboratory batch fermenter, anaerobic digestion was carried out in a 25 L capacity digester maintained at 36 ± 0.5 ℃. Pre-treatment of the cassava biomass with spoilage fungi, Aspergillus niger and PeniciUium species yielded large amounts of fermentable sugars for digestion. Cassava slurry was made and mixed with zebra droppings (2:1 v/v) and loaded into the digester of 20 L working volume. Analysis results showed an increase in most nutrients after pretreatment except for starch which decreased from 76% to 60% as a result of its hydrolysis to fermentable sugars by the spoilage fungi. Theoretical biogas yields were between 0.71 nm3 and 0.75 nm^3 per kg VS (volatile solids) destroyed while the total biogas yields of between 250 nm^3 and 300 nm^3 per kg VS fed into the digester was obtained after 20 days residence time. Cassava is not yet a staple food in some BRICs countries like South Africa and the peels and other by-products of its processing are equally suitable for energy production. The use of cassava will be an alternative feedstock strategy for several rural biogas projects running with cow dungs inside South Africa. In addition, opportunities exist for decentralized, cheaper and socially advantageous bioenergy production from cassava considering that fuel and electricity needs are not satisfied in many rural areas. Finally, the incorporation of cassava anaerobic digestion facility at different scales will deliver additional benefits like the incorporation of nutrients and residual carbon into the land as fertilizer.