期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
生物质气化技术及产业化应用 被引量:1
1
作者 赵小玲 《中国造纸》 CAS 北大核心 2015年第12期63-65,共3页
生物质热分解(气化)技术是生物质热转化技术的核心之一,分为生物质直接气化技术和生物质间接气化技术。生物质间接气化技术可以实现生物合成气、热、电的高效联产。本文介绍和分析了欧洲已经建成的第一个大型生物甲烷气示范项目和实现... 生物质热分解(气化)技术是生物质热转化技术的核心之一,分为生物质直接气化技术和生物质间接气化技术。生物质间接气化技术可以实现生物合成气、热、电的高效联产。本文介绍和分析了欧洲已经建成的第一个大型生物甲烷气示范项目和实现生物质甲烷气并网用于汽车用气和居家燃气的流程。 展开更多
关键词 生物质热分解 生物质 BFB化炉 CFB燃烧炉 GO Bi Gas项目 生物质甲烷气
下载PDF
Experiments on Ni/γ-Al_2O_3 catalyst for improving lower heating value of biomass gasification fuel gas via methanation 被引量:3
2
作者 Dong Xinxin Jin Baosheng +1 位作者 Wang Yanyan Niu Miaomiao 《Journal of Southeast University(English Edition)》 EI CAS 2017年第4期448-456,共9页
Ni-based catalysts supported by γ-Al_2O_3 were prepared for improving the lower heating value( LHV) of biomass gasification fuel gas through methanation. Prior to the performance tests, the physico-chemical propertie... Ni-based catalysts supported by γ-Al_2O_3 were prepared for improving the lower heating value( LHV) of biomass gasification fuel gas through methanation. Prior to the performance tests, the physico-chemical properties of the catalyst samples were characterized by N_2 isothermal adsorption/desorption, X-ray diffraction( XRD) and a scanning electron microscope( SEM). Afterwards, a series of experiments were carried out to investigate the catalytic performance and the results showthat catalysts with 15% and20% Ni loadings have better methanation catalytic effect than those with 5% and 10% Ni loadings in terms of elevating the LHV of biomass gasification fuel gas. M oreover, controllable influential factors such as the reaction temperature, the H_2/CO ratio and the water content occupy an important position in the methanation of biomass gasification fuel gas. 15 Ni/γ-Al_2O_3 and 20 Ni/γ-Al_2O_3 catalysts have a higher CO conversion and CH_4 selectivity at 350 ℃ and the LHV of biomass gasification fuel gas can be largely increased by 34. 3 % at 350 ℃. Higher H_2/CO ratio and a lower water content are more beneficial for improving the LHV of biomass gasification fuel gas when considering the combination of both CO conversion and CH_4 selectivity. This is due to the fact that a higher H_2/CO ratio and lower water content can increase the extent of the methanation reaction. 展开更多
关键词 N i-based catalyst METHANATION BIOMASS gasification fuel gas low er heating value
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部