沼气和太阳能作为一种清洁的可再生能源已引起人们广泛的关注。以麦秆、树叶和玉米芯为原料,将其进行微波热解碳化,并将碳化产物分别作为促进剂和对电极催化剂应用于厌氧发酵(Anaerobic Digestion,AD)和染料敏化太阳能电池(Dye-Sensitiz...沼气和太阳能作为一种清洁的可再生能源已引起人们广泛的关注。以麦秆、树叶和玉米芯为原料,将其进行微波热解碳化,并将碳化产物分别作为促进剂和对电极催化剂应用于厌氧发酵(Anaerobic Digestion,AD)和染料敏化太阳能电池(Dye-Sensitized Solar Cells,DSSCs)中,研究其对沼气厌氧发酵系统的产气量、化学需氧量(Chemical Oxygen Demand,COD)去除率、p H和DSSCs光伏性能的影响,探究其在太阳能和生物质能领域的应用潜能。实验结果表明:碳化生物质作为厌氧发酵促进剂可明显提高沼气产量(添加碳材料549 m L/g VS vs.对照组409 m L/g VS),提高COD去除率(添加碳材料68.00%vs.对照组29.55%),且对厌氧发酵系统p H没有显著影响;碳化生物质作为对电极催化剂,其DSSCs的光电转换效率与同等实验条件下传统贵金属Pt电极相近(3.52%vs.4.64%),可作为替代贵金属Pt的低成本材料用于染料敏化太阳能电池中。展开更多
Photocatalytic decomposition of sugars is a promising way of providing H_(2),CO,and HCOOH as sus-tainable energy vectors.However,the production of C_(1) chemicals requires the cleavage of robust C−C bonds in sugars wi...Photocatalytic decomposition of sugars is a promising way of providing H_(2),CO,and HCOOH as sus-tainable energy vectors.However,the production of C_(1) chemicals requires the cleavage of robust C−C bonds in sugars with concurrent production of H_(2),which remains challenging.Here,the photo-catalytic activity for glucose decomposition to HCOOH,CO(C_(1) chemicals),and H_(2) on Cu/TiO_(2)was enhanced by nitrogen doping.Owing to nitrogen doping,atomically dispersed and stable Cu sites resistant to light irradiation are formed on Cu/TiO_(2).The electronic interaction between Cu and nitrogen ions originates valence band structure and defect levels composed of N 2p orbit,distinct from undoped Cu/TiO_(2).Therefore,the lifetime of charge carriers is prolonged,resulting in the pro-duction of C_(1) chemicals and H_(2) with productivities 1.7 and 2.1 folds that of Cu/TiO_(2).This work pro-vides a strategy to design coordinatively stable Cu ions for photocatalytic biomass conversion.展开更多
Carbonaceous gold mines are important refractory gold ores. The previous results demonstrate that the carbonaceous matter is mainly composed of elemental carbon, organic acid and hydrocarbons. The dissolved aurocyanid...Carbonaceous gold mines are important refractory gold ores. The previous results demonstrate that the carbonaceous matter is mainly composed of elemental carbon, organic acid and hydrocarbons. The dissolved aurocyanide complex is robbed by adsorption of carbonaceous matter, which is similar to activated carbon in cyanide leaching of gold. The pretreatment methods of carbonaceous gold ores were introduced, including high temperature roasting, bio-oxidation, chemical oxidation, competitive adsorption, barrier inhibition and microwave roasting. Recently, bio-oxidation was developed rapidly due to its advantages such as mild conditions, simple processes, low energy consumption and friendly environment. The known microorganisms related with bio-oxidation pretreatment mainly are chemolithotroph bacteria such as Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans. The researches on decomposing and passivating carbonaceous matter were commenced by Phanerochaete chrysosporium, Pseudomonadaceae and Streptomyces setonii. Finally, the main problems were analyzed and the application prospect of this technique was looked forward.展开更多
We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield...We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H20. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.展开更多
This paper reports a new strategy for the structural reconstruction of biomass carbon sulfonic acid(BCSA)to its solid superacid counterpart.In this approach,a cheap layered biomass carbon(BC)source is chemically exfol...This paper reports a new strategy for the structural reconstruction of biomass carbon sulfonic acid(BCSA)to its solid superacid counterpart.In this approach,a cheap layered biomass carbon(BC)source is chemically exfoliated by cetyltrimethyl ammonium bromide and then converted to silica-isolated carbon nanosheets(CNSs)by a series of conversion steps.The state of the silica-isolated CNSs and the stacking density of their nanoparticles are regulated by the dehydration temperature.Only the highly isolated and non-crosslinked CNSs with loose particle stacking structures obtained upon dehydration at 250℃ can be turned into superacid sites(with stronger acidity than that of 100%H2 SO4)after sulfonation.This is accompanied by the creation of abundant hierarchical slit pores with high external surface area,mainly driven by the strong hydrogen bonding interactions between the introduced sulfonic acid groups.In typical acid-catalyzed esterification,etherification,and hydrolysis reactions,the newly formed superacid exhibits superior catalytic activity and stability compared to those of common BCSA and commercial Amberlyst-15 catalysts,owing to its good structural stability,highly exposed stable superacidic sites,and abundance of mesoporous/macroporous channels with excellent mass transfer rate.This groundbreaking work not only provides a novel strategy for fabricating bio-based solid superacids,but also overcomes the drawbacks of BCSA,i.e.,unsatisfactory structural stability,acidity,and porosity.展开更多
A simple, easily-operated and economical carbonization technology with Eupatorium adenophorum was introduced in terms of instrument selection, carboniza- tion of Eupatorium adenophorum and preparation of carbon rod, a...A simple, easily-operated and economical carbonization technology with Eupatorium adenophorum was introduced in terms of instrument selection, carboniza- tion of Eupatorium adenophorum and preparation of carbon rod, and evaluation was made on economic profits from carbonization of Eupatorium adenophorum.展开更多
This study evaluated the effect of carbon dioxide addition on microbiological quality during refrigerated storage of raw milk collected in Curitiba city, Brazil. A three factor-two level full factorial design was used...This study evaluated the effect of carbon dioxide addition on microbiological quality during refrigerated storage of raw milk collected in Curitiba city, Brazil. A three factor-two level full factorial design was used to investigate the effect of the pH (5.8-6.4), storage time (0-10 days) and storage temperature (5-10 ℃), on the responses, namely, mesophiles, psychrotrophs, lipolytic psychrotrophs and proteolytic psychrotrophs counts. Results showed that increase in pH and storage time had significant effect on the microbial count. No significant effect of storage temperature was observed for all the microorganisms studied. All responses were well predicted by selected mathematical models, as denoted by coefficient of determination above 0.95.展开更多
To study the abilities of Chlorella sorokiniana CS-01 on using CO2 from flue gases to produce biodiesel,the microaglae was cultured with different simulated flue gases containing 5%-15%(volume fraction) of CO2.The res...To study the abilities of Chlorella sorokiniana CS-01 on using CO2 from flue gases to produce biodiesel,the microaglae was cultured with different simulated flue gases containing 5%-15%(volume fraction) of CO2.The results show that strain CS-01 could grow at 15% CO2 and grow well under CO2 contents ranging from 5%-10%.The maximal biomass productivity and lipid productivity were obtained when aerating with 10% of CO2.The lipids content ranged from 28% to 43% of dry mass of biomass.The main fatty acid compositions of strain CS-01 were C14-C18(>72%) short-chain FAMEs(known as biodiesel feedstocks).Meanwhile,the biodiesel productivity was over 60%,suggesting that Chlorella sorokiniana CS-01 has a great potential for CO2 mitigation and biodiesel production.Furthermore,differential expression of three genes related to CO2 fixation and fatty acid synthesis were studied to further describe the effect of simulated flue gases on the growth and lipid accumulation of strain CS-01 at molecular level.展开更多
The patchy distribution of vegetation in dry land results in well-documented "fertile islands". However, the response of shrub fertile islands to plant recovery and the underlying mechanisms, such as the lin...The patchy distribution of vegetation in dry land results in well-documented "fertile islands". However, the response of shrub fertile islands to plant recovery and the underlying mechanisms, such as the linkage plant and soil properties, remain unknown.We sampled soils from areas with three different plant coverages(25%, 45%, and 75%) and three of their adjacent inter-plants to investigate soil physicochemical and microbial properties in the upper Minjiang River arid valley. The results showed that these factors were influenced by the persistence of plants that contrasted with the inter-plant interspaces. We found fertile islands in under-plant soil that were enhanced with increasing plant coverage, from 25% to 45% and 75%; however, there were no significant differences between 45% and 75% plant coverage apart from the soil clay content and the fungi to bacteria ratio. The soil microbial communities in under-plant soil were strongly influenced by the total soil carbon(TC), soil organic carbon(SOC),and available nitrogen(AN), whereas the microbial communities in inter-plant soil were primarily constrained by the AN and available phosphorous(AP). Moreover, the inter-plant soil properties, including gravimetric soil water content, pH, electrical conductivity(EC), and soil C:N ratio, were also strongly influenced by adjacent vegetation, which suggested that fertile islands may be beneficial for plant recovery in this region.展开更多
文摘沼气和太阳能作为一种清洁的可再生能源已引起人们广泛的关注。以麦秆、树叶和玉米芯为原料,将其进行微波热解碳化,并将碳化产物分别作为促进剂和对电极催化剂应用于厌氧发酵(Anaerobic Digestion,AD)和染料敏化太阳能电池(Dye-Sensitized Solar Cells,DSSCs)中,研究其对沼气厌氧发酵系统的产气量、化学需氧量(Chemical Oxygen Demand,COD)去除率、p H和DSSCs光伏性能的影响,探究其在太阳能和生物质能领域的应用潜能。实验结果表明:碳化生物质作为厌氧发酵促进剂可明显提高沼气产量(添加碳材料549 m L/g VS vs.对照组409 m L/g VS),提高COD去除率(添加碳材料68.00%vs.对照组29.55%),且对厌氧发酵系统p H没有显著影响;碳化生物质作为对电极催化剂,其DSSCs的光电转换效率与同等实验条件下传统贵金属Pt电极相近(3.52%vs.4.64%),可作为替代贵金属Pt的低成本材料用于染料敏化太阳能电池中。
文摘Photocatalytic decomposition of sugars is a promising way of providing H_(2),CO,and HCOOH as sus-tainable energy vectors.However,the production of C_(1) chemicals requires the cleavage of robust C−C bonds in sugars with concurrent production of H_(2),which remains challenging.Here,the photo-catalytic activity for glucose decomposition to HCOOH,CO(C_(1) chemicals),and H_(2) on Cu/TiO_(2)was enhanced by nitrogen doping.Owing to nitrogen doping,atomically dispersed and stable Cu sites resistant to light irradiation are formed on Cu/TiO_(2).The electronic interaction between Cu and nitrogen ions originates valence band structure and defect levels composed of N 2p orbit,distinct from undoped Cu/TiO_(2).Therefore,the lifetime of charge carriers is prolonged,resulting in the pro-duction of C_(1) chemicals and H_(2) with productivities 1.7 and 2.1 folds that of Cu/TiO_(2).This work pro-vides a strategy to design coordinatively stable Cu ions for photocatalytic biomass conversion.
基金Projects(51174062,51104036)supported by the National Natural Science Foundation of ChinaProject(2012BAE06B05)supported by the National Science and Technology Support Program of China during the 12th Five-Year Plan Period+1 种基金Projects(2012AA061502,2012AA061501)supported by the National High-Tech Research and Development Program of ChinaProjects(N120602006,N110302002,N110602005)supported by Fundamental Research Funds for the Central Universities of China
文摘Carbonaceous gold mines are important refractory gold ores. The previous results demonstrate that the carbonaceous matter is mainly composed of elemental carbon, organic acid and hydrocarbons. The dissolved aurocyanide complex is robbed by adsorption of carbonaceous matter, which is similar to activated carbon in cyanide leaching of gold. The pretreatment methods of carbonaceous gold ores were introduced, including high temperature roasting, bio-oxidation, chemical oxidation, competitive adsorption, barrier inhibition and microwave roasting. Recently, bio-oxidation was developed rapidly due to its advantages such as mild conditions, simple processes, low energy consumption and friendly environment. The known microorganisms related with bio-oxidation pretreatment mainly are chemolithotroph bacteria such as Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans. The researches on decomposing and passivating carbonaceous matter were commenced by Phanerochaete chrysosporium, Pseudomonadaceae and Streptomyces setonii. Finally, the main problems were analyzed and the application prospect of this technique was looked forward.
基金This work was supported by the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), the National High Tech Research and Development Program (No.2009AA05Z435), and the National Natural Science Foundation of China (No.50772107).
文摘We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H20. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.
基金financial support for this work by the National Natural Science Foundation of China(21690080,21676079,21546010,21690083,21878288)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB17020100)+2 种基金DNL Cooperation Fund CAS(DNL180302)the Natural Science Foundation of Hunan Province(2018JJ3335)the Innovation Platform Open Fund of Hunan College(18K016)~~
文摘This paper reports a new strategy for the structural reconstruction of biomass carbon sulfonic acid(BCSA)to its solid superacid counterpart.In this approach,a cheap layered biomass carbon(BC)source is chemically exfoliated by cetyltrimethyl ammonium bromide and then converted to silica-isolated carbon nanosheets(CNSs)by a series of conversion steps.The state of the silica-isolated CNSs and the stacking density of their nanoparticles are regulated by the dehydration temperature.Only the highly isolated and non-crosslinked CNSs with loose particle stacking structures obtained upon dehydration at 250℃ can be turned into superacid sites(with stronger acidity than that of 100%H2 SO4)after sulfonation.This is accompanied by the creation of abundant hierarchical slit pores with high external surface area,mainly driven by the strong hydrogen bonding interactions between the introduced sulfonic acid groups.In typical acid-catalyzed esterification,etherification,and hydrolysis reactions,the newly formed superacid exhibits superior catalytic activity and stability compared to those of common BCSA and commercial Amberlyst-15 catalysts,owing to its good structural stability,highly exposed stable superacidic sites,and abundance of mesoporous/macroporous channels with excellent mass transfer rate.This groundbreaking work not only provides a novel strategy for fabricating bio-based solid superacids,but also overcomes the drawbacks of BCSA,i.e.,unsatisfactory structural stability,acidity,and porosity.
基金Supported by Qiannan Forestry S&T Promotion Project~~
文摘A simple, easily-operated and economical carbonization technology with Eupatorium adenophorum was introduced in terms of instrument selection, carboniza- tion of Eupatorium adenophorum and preparation of carbon rod, and evaluation was made on economic profits from carbonization of Eupatorium adenophorum.
文摘This study evaluated the effect of carbon dioxide addition on microbiological quality during refrigerated storage of raw milk collected in Curitiba city, Brazil. A three factor-two level full factorial design was used to investigate the effect of the pH (5.8-6.4), storage time (0-10 days) and storage temperature (5-10 ℃), on the responses, namely, mesophiles, psychrotrophs, lipolytic psychrotrophs and proteolytic psychrotrophs counts. Results showed that increase in pH and storage time had significant effect on the microbial count. No significant effect of storage temperature was observed for all the microorganisms studied. All responses were well predicted by selected mathematical models, as denoted by coefficient of determination above 0.95.
基金Project(50621063) supported by the National Natural Science Foundation for Distinguished Group of ChinaProjects(2010bsxt05,2010ssxt246) supported by the Innovation Foundation of Science and Technology of Central South University,China
文摘To study the abilities of Chlorella sorokiniana CS-01 on using CO2 from flue gases to produce biodiesel,the microaglae was cultured with different simulated flue gases containing 5%-15%(volume fraction) of CO2.The results show that strain CS-01 could grow at 15% CO2 and grow well under CO2 contents ranging from 5%-10%.The maximal biomass productivity and lipid productivity were obtained when aerating with 10% of CO2.The lipids content ranged from 28% to 43% of dry mass of biomass.The main fatty acid compositions of strain CS-01 were C14-C18(>72%) short-chain FAMEs(known as biodiesel feedstocks).Meanwhile,the biodiesel productivity was over 60%,suggesting that Chlorella sorokiniana CS-01 has a great potential for CO2 mitigation and biodiesel production.Furthermore,differential expression of three genes related to CO2 fixation and fatty acid synthesis were studied to further describe the effect of simulated flue gases on the growth and lipid accumulation of strain CS-01 at molecular level.
基金supported by the National Key Research and Development Program of China(2017YFC0504003)the National Natural Science Foundation of China(31170581)
文摘The patchy distribution of vegetation in dry land results in well-documented "fertile islands". However, the response of shrub fertile islands to plant recovery and the underlying mechanisms, such as the linkage plant and soil properties, remain unknown.We sampled soils from areas with three different plant coverages(25%, 45%, and 75%) and three of their adjacent inter-plants to investigate soil physicochemical and microbial properties in the upper Minjiang River arid valley. The results showed that these factors were influenced by the persistence of plants that contrasted with the inter-plant interspaces. We found fertile islands in under-plant soil that were enhanced with increasing plant coverage, from 25% to 45% and 75%; however, there were no significant differences between 45% and 75% plant coverage apart from the soil clay content and the fungi to bacteria ratio. The soil microbial communities in under-plant soil were strongly influenced by the total soil carbon(TC), soil organic carbon(SOC),and available nitrogen(AN), whereas the microbial communities in inter-plant soil were primarily constrained by the AN and available phosphorous(AP). Moreover, the inter-plant soil properties, including gravimetric soil water content, pH, electrical conductivity(EC), and soil C:N ratio, were also strongly influenced by adjacent vegetation, which suggested that fertile islands may be beneficial for plant recovery in this region.