In this paper, the effect of different fertilizer treatments on the main indexes of growth and development and dry matter accumulation of perennial mulberry, which is cut and pruned in summer, were studied with ‘3414...In this paper, the effect of different fertilizer treatments on the main indexes of growth and development and dry matter accumulation of perennial mulberry, which is cut and pruned in summer, were studied with ‘3414’ field experiment design. The results showed that N, P, and K at proper amounts could promote mulberry growth and development, improve its dry matter content, increase its dry matter accumulation. The effects of N, P, K on leaf yield per plant were respectively expressed as follows: N2 N3 N1 N0 , P2 P1 P3 P0 , K2 K1 K3 K0 . It can be concluded that the recommended fertilizer amounts of dry matter accumulations in mulberry leaf were 694.36 kg/hm2 of N, 198.15 kg/hm2 of P, and 274.26 kg/hm2 of K and the dry matter achieved the maximum at 8 045.04 kg/hm2 . The recommended fertilizer amounts of accumulated dry matter in branch were 1 000.05 kg/hm2 of N, 242.04 kg/hm2 of P, and 218.01 kg/hm 2 of K, and the dry matter achieved the maximum at 5 969.05 kg/hm2 . The recommended fertilizer amount in young shoots were 883.76 kg/hm2 of N, 204.48 kg/hm2 of P and 426.59 kg/hm2 of K and dry matter achieved the maximum at 1 410.24 kg/hm2 . This paper could provide reference for the construction of highly-qualified mulberry field in Sichuan hilly area.展开更多
The responses of the growth and metabolism activity of Phanerochaete chrysosporium (P. chrysosporium) to cadmium (Cd), lead (Pb) and their combined pollution stress, were investigated in plate and liquid culture...The responses of the growth and metabolism activity of Phanerochaete chrysosporium (P. chrysosporium) to cadmium (Cd), lead (Pb) and their combined pollution stress, were investigated in plate and liquid culture conditions. The diameter of colony, biomass ofP. chrysosporium, ligninolytic enzyme activities and bioaccumulation quantity of heavy metals were detected. The results indicated that Cd was more toxic than Pb to P. chrysosporium and the toxicity of Cd and Pb to P. chrysosporium was further strengthened under Cd+Pb combined pollution in different culture conditions. Heavy metals Cd and Pb had indirect influence on the production of ligninolytic enzymes by directly affecting the fungal growth and metabolic activity, and by another way in liquid culture. In addition, the results provided an evidence of the accumulation of Cd and Pb on the mycelia ofP. chrysosporium.展开更多
[Objective] This study aimed to investigate the effects of seaweed bio-or- ganic fertilizer on yield and quality of winter wheat. [Method] Seaweed bio-organic fertilizer was applied to leaves of winter wheat according...[Objective] This study aimed to investigate the effects of seaweed bio-or- ganic fertilizer on yield and quality of winter wheat. [Method] Seaweed bio-organic fertilizer was applied to leaves of winter wheat according to the dose of 45 kg/hm^2 from jointing stage to maturing stage, and plant height, dry matter accumulation, flag leaf photosynthetic characteristics and grain yield of winter wheat were investigated. [Result] Foliar spraying of seaweed bio-organic fertilizer showed little effect on plant height of winter wheat, thickened stems, promoted dry matter accumulation, in- creased flag leaf photosynthetic rate by 3.16%, and increased yield of winter wheat by 6.85%. [Conclusion] Foliar spraying of seaweed bio-organic fertilizer promoted the intelligent growth, thickened the stems, improved the lodging resistance, significantly increased the panicle weight per plant, and increased the bulk density of winter wheat, as well as improving the physical quality of wheat grain. In addition, foliar spraying of seaweed bio-organic fertilizer promoted the synthesis of chlorophyll and mitigated the decomposition of chlorophyll in winter wheat. Under the background of fertilizer-pesticide double reduction, the test results and data of this study can be promoted in the wheat-growing areas of Shandong Province and even whole China.展开更多
The authors constructed a simplified model of spring wheat (Triticum aestivum L.) carbon assimilation and dry matter accumulation (DMA) process which consisted of two independent variables, day length (L) and total...The authors constructed a simplified model of spring wheat (Triticum aestivum L.) carbon assimilation and dry matter accumulation (DMA) process which consisted of two independent variables, day length (L) and total daily radiation (TDR). Leaf water potential (Ψ) was incorporated into the simplified growth model based on the assumption that both light use efficiency (α) and CO 2 conductance of assimilation (g c) were depressed by water limitation. Finally,Ψ was estimated from a regression equation in which the independent variables were relative soil water content in the upper 80 cm (θ R,80 ), ambient temperature (T a), vapor pressure deficit (VPD), the cumulative leaf water potential below thresholds of -1.5 MPa (Ψ c,1.5 ). Some applications in research program of field experiment of atmosphere_land surface processes in Heihe River region were tested. The simulated data agreed well with the data observed at Linze oasis in 1989 for various levels of water supply and at Zhangye oasis in 1992 in the field. The analysis and simulation using the model demonstrated that the simplified growth model could describe very well the DMA process of spring wheat with and without water limitation in the region of HEIFE (Heihe field experiment).展开更多
[Objective] This study aimed to investigate the effects of gel-based controlled release fertilizers (CRFs) on agronomic characteristics and physiological indices of corn. [Method] Pot experiment was carried out to i...[Objective] This study aimed to investigate the effects of gel-based controlled release fertilizers (CRFs) on agronomic characteristics and physiological indices of corn. [Method] Pot experiment was carried out to investigate the agronomic characteristics and physiological indices of corn fertilized with controlled release fertilizers compared with conventional fertilizer (CF). [Result] Plant height, stem girth, leaf area and root volume of corn were significantly increased under the CRF treatments; photosynthetic rate and soluble protein content were also improved. Dry matter accumulations under the two CRF treatments were increased by 21.3% and 17.0% compared with CF application at one time (CF1), and 19.6% and 15.4% with CF application at two times (CF2), respectively. Accumulation amounts of N, P and K in whole plant under the two CRF treatments were increased by 44.0% -24.7% , 40.0%-25.9% and 20.1% -13.9% ; and the nutrient use efficiencies of N, P and K were improved by 22.9% -13.4% , 11.2% -9.6% and 17.5% -12.1% , respectively. [Conclusion] The results implied that the CRFs could significantly improve nutrient use efficiency and plant yield.展开更多
In order to select the suitable soil for transplanting tobacco in Hunan to- bacco growing areas, pot experiment was conducted to study the effects of different transplanting nutdent soils on the growth and dry matter ...In order to select the suitable soil for transplanting tobacco in Hunan to- bacco growing areas, pot experiment was conducted to study the effects of different transplanting nutdent soils on the growth and dry matter accumulation of tobacco. The results indicated that the treatments of transplanting with nutrition soils were better than the control group. For the underground part, transplanting nutrient soil could effectively improve the root activity of tobacco plants, and increase root volume, root surface area, total root length, as well as the number of root tips and the number of root branches. For the aboveground part, transplanting nutrient soil could remarkably improve the plant height, stem girth, leaf number and maximum leaf area, and could simultaneously significantly increase the dry matter accumulation. By comparison, peat + mushroom residue + saw dust + straw powder + bicchar + root promoting nutrient solution was the most effective treatment, and the effect of sole application of nutrient solution was limited. In conclusion, transplanting with nutrition soil could effectively promote the growth and dry matter accumulation of tobacco.展开更多
In order to clarify the relationships between soil pH and flue-cured tobacco growth and dry matter accumulation, effects of soil pH on root morphology and vigor, aboveground agronomic traits and dry matter accumulatio...In order to clarify the relationships between soil pH and flue-cured tobacco growth and dry matter accumulation, effects of soil pH on root morphology and vigor, aboveground agronomic traits and dry matter accumulation of flue-cured tobacco were investigated by pot experiment. The results showed that on the whole, the intensity of soil pH on flue-cured tobacco growth and dry matter accumulation ranked as pH=6's 〉 pH=7's 〉 pH=5's 〉 pH=4's 〉 pH=8's. Acidic soil (pH=4) was not conducive to the early growth of tobacco plants, reduced root vigor and affected dry matter accumulation; and alkaline soil (pH=8) was not conducive to the growth of tobacco roots and shoot, reduced root vigor and affected dry matter accumulation. In conclusion, the suitable pH of soil for growth of flue-cured tobacco in Xiangxi is 5-7, but weakly acidic soil is the best.展开更多
Through a pot culture lanthanum nitrate was applied to maize seedlings grown in a red loamy soil to investigate the physiological and toxic effects of added La on the growth of crop seedlings and La bioaccumulation to...Through a pot culture lanthanum nitrate was applied to maize seedlings grown in a red loamy soil to investigate the physiological and toxic effects of added La on the growth of crop seedlings and La bioaccumulation to help understand the environmental chemistry behaviors of rare earth element as fertilizers in soils. Compared to the control, La concentrations in shoots and especially in roots of maize seedlings increased with an increase of La in the soil. Also, with added concentrations of La≥0.75 g La kg-1 soil and≥0.05 g La kg-1 soil, the dry weight of shoots and roots of maize seedlings was significantly reduced (P≤0.05), respectively, compared with the control. Additionally, La≥0.5 g kg-1 in the soil significantly inhibited (P≤0.05) primary root elongation. Roots were more sensitive to La stress than shoots and thus could be used as a biomarker to La stress. Overall, in the red loamy soil studied, La had no significant beneficial effects on the growth of maize at the added La levels above 0.1 g kg-1 soil.展开更多
Photosynthetic production is a major determinant of final yield in crop plants. A simulation model was developed for canopy photosynthesis and dry matter accumulation in oilseed rape (Brassica napus L.) based on the e...Photosynthetic production is a major determinant of final yield in crop plants. A simulation model was developed for canopy photosynthesis and dry matter accumulation in oilseed rape (Brassica napus L.) based on the ecophysiological processes and using a three-layer radiation balance scheme for calculating the radiation interception and absorption by the layers of flowers, pods, and leaves within the canopy. Gaussian integration method was used to calculate photosynthesis of the pod and leaf layers, and the daily total canopy photosynthesis was determined by the sum of photosynthesis from the two layers of green organs. The effects of physiological age, temperature, nitrogen, and water deficit on maximum photosynthetic rate were quantified. Maintenance and growth respiration were estimated to determine net photosynthetic production. Partition index of the shoot in relation to physiological development time was used to calculate shoot dry matter from plant biomass and shoot biomass loss because of freezing was quantified by temperature effectiveness. Testing of the model for dynamic dry matter accumulation through field experiments of different genotypes, sowing dates, and nitrogen levels showed good fit between the observed and simulated data, with an average root mean square error of 10.9% for shoot dry matter. Thus, the present model appears to be reliable for the prediction of photosynthetic production in oilseed rape.展开更多
Negative effect of precipitation on plant photosynthesis was investigated in this work. Stomatal conductance, transpiration rate and net photosynthetic rate were measured before and after each precipitation event, res...Negative effect of precipitation on plant photosynthesis was investigated in this work. Stomatal conductance, transpiration rate and net photosynthetic rate were measured before and after each precipitation event, respectively, and the corresponding precipitation was recorded as well. Moreover, plant dry matter accumulation was counted at the end of our entire experiment. The results show that precipitation fully demonstrates its negative effect on plant photosynthesis under the condition of without water shortage. Although it has not been proved, leaf shape seems to be associated with this effect. Broad-leaved species are less influenced than coniferous and lanceleaf species no matter on the length of variation time or changes in variation values. The different situation among three broad-leaved species seems to illustrate that the effect is also related to the size of single leaf area. The correlation between precipitation and photosynthetic rate variation is analogous to the relationship between precipitation and splash erosion, and in the view of the relationship between plant photosynthetic characteristics and dry mass accumulation, it can be thought that it can reflect the negative impact of precipitation on plant growth by making use of splash erosion. Therefore, a section was added in the traditional plant biomass estimation algorithms by using eco-physiological models, and this was proved to enhance the accuracy of traditional estimation from preliminary verifications.展开更多
Screening cultivars to grow under conditions of low phosphorus (P) availability and utilize P efficiently from compounds of low solubility in soils may be beneficial to overcome poor plant growth in P-deficient soils....Screening cultivars to grow under conditions of low phosphorus (P) availability and utilize P efficiently from compounds of low solubility in soils may be beneficial to overcome poor plant growth in P-deficient soils. The growth behavior and P utilization efficiency of seven wheat cultivars grown in hydroponics were studied, using rock phosphate as P source. The wheat cultivars grown for 30 days were significantly different in biomass accumulation, P uptake and P utilization efficiency. The dry matter production of all the cultivars was significantly correlated with P uptake, which in turn correlated to the drop in the root medium pH. The ranking of wheat cultivars on the basis of dry matter yield, P uptake and P utilization efficiency was Zamindar 80 > Yecora > C 271 > WL 711 > Barani 83 > PARI 73 > Rohtas. The cultivar Zamindar 80 appeared to possess the best growth potential in P-deficient soils.展开更多
The goal of our study is to present results about the effects of selected industrial wastes-sewage sludge, lime sludge, compost-on the physiological parameters of plants. Maize seedlings (Zea mays L cvs. Norma SC) w...The goal of our study is to present results about the effects of selected industrial wastes-sewage sludge, lime sludge, compost-on the physiological parameters of plants. Maize seedlings (Zea mays L cvs. Norma SC) were used in soil plant (rhizobox) and nutrient solution plant system. The filtrates of the examined materials were used in the nutrient solution and the raw materials in the soil. Dry matter accumulation of shoots and roots, relative chlorophyll contents and the contents of some elements were measured in the plants grown on the nutrient solution. The examined materials contain some useful elements for plants e.g. Cu, Fe, K, and Mg and plenty of toxic metals e.g. AI, Cr. Root growth in the rhizoboxes was monitored, as well as that of roots in the experiment using soil. This type of growth was more intensive with the use of lime sludge than with of sewage sludge. On the other hand, the results were better at the sewage sludge than the lime sludge on the nutrient solution.展开更多
When our knowledge of a field accumulates to a certain level,we are bound to see the rise of one or more great scientists.They will make a series of grand discoveries/breakthroughs and push the discipline into an '...When our knowledge of a field accumulates to a certain level,we are bound to see the rise of one or more great scientists.They will make a series of grand discoveries/breakthroughs and push the discipline into an 'age of grand discoveries'.Mathematics,geography,physics and chemistry have all experienced their ages of grand discoveries;and in life sciences,the age of grand discoveries has appeared countless times since the 16th century.Thanks to the ever-changing development of molecular biology over the past 50 years,contemporary life science is once again approaching its breaking point and the trigger for this is most likely to be 'lifeomics'.At the end of the 20th century,genomics wrote out the 'script of life';proteomics decoded the script;and RNAomics,glycomics and metabolomics came into bloom.These 'omics',with their unique epistemology and methodology,quickly became the thrust of life sciences,pushing the discipline to new high.Lifeomics,which encompasses all omics,has taken shape and is now signalling the dawn of a new era,the age of grand discoveries.展开更多
基金Supported by Science&Technology Innovation of Sichuan Characteristic AgricultureProvincial Breeding Key Project of the 12th Five Year Plan (No.2011yzgg-13-02-01)+2 种基金Sichuan Academy of Agricultural Sciences (2011LWJJ-008)Seed Industry Innovation and Transformation Project (2011JYGC10-027-02)Modern Agricultural Technology System Project (No.CARS-22)~~
文摘In this paper, the effect of different fertilizer treatments on the main indexes of growth and development and dry matter accumulation of perennial mulberry, which is cut and pruned in summer, were studied with ‘3414’ field experiment design. The results showed that N, P, and K at proper amounts could promote mulberry growth and development, improve its dry matter content, increase its dry matter accumulation. The effects of N, P, K on leaf yield per plant were respectively expressed as follows: N2 N3 N1 N0 , P2 P1 P3 P0 , K2 K1 K3 K0 . It can be concluded that the recommended fertilizer amounts of dry matter accumulations in mulberry leaf were 694.36 kg/hm2 of N, 198.15 kg/hm2 of P, and 274.26 kg/hm2 of K and the dry matter achieved the maximum at 8 045.04 kg/hm2 . The recommended fertilizer amounts of accumulated dry matter in branch were 1 000.05 kg/hm2 of N, 242.04 kg/hm2 of P, and 218.01 kg/hm 2 of K, and the dry matter achieved the maximum at 5 969.05 kg/hm2 . The recommended fertilizer amount in young shoots were 883.76 kg/hm2 of N, 204.48 kg/hm2 of P and 426.59 kg/hm2 of K and dry matter achieved the maximum at 1 410.24 kg/hm2 . This paper could provide reference for the construction of highly-qualified mulberry field in Sichuan hilly area.
基金Projects(21477027,51278176)supported by the National Natural Science Foundation of ChinaProject(2014A020216048)supported by the Science and Technology Planning Project of Guangdong Province,ChinaProject(2015M582363)supported by the China Postdoctoral Science Foundation
文摘The responses of the growth and metabolism activity of Phanerochaete chrysosporium (P. chrysosporium) to cadmium (Cd), lead (Pb) and their combined pollution stress, were investigated in plate and liquid culture conditions. The diameter of colony, biomass ofP. chrysosporium, ligninolytic enzyme activities and bioaccumulation quantity of heavy metals were detected. The results indicated that Cd was more toxic than Pb to P. chrysosporium and the toxicity of Cd and Pb to P. chrysosporium was further strengthened under Cd+Pb combined pollution in different culture conditions. Heavy metals Cd and Pb had indirect influence on the production of ligninolytic enzymes by directly affecting the fungal growth and metabolic activity, and by another way in liquid culture. In addition, the results provided an evidence of the accumulation of Cd and Pb on the mycelia ofP. chrysosporium.
基金Supported by Key Project of the National Twelfth Five-Year Research Program of China(2011BAD32B02)Crosswise Project of Shandong Shidai Marine Biological Technology(Weihai)Co.,Ltd.(2015-2017)~~
文摘[Objective] This study aimed to investigate the effects of seaweed bio-or- ganic fertilizer on yield and quality of winter wheat. [Method] Seaweed bio-organic fertilizer was applied to leaves of winter wheat according to the dose of 45 kg/hm^2 from jointing stage to maturing stage, and plant height, dry matter accumulation, flag leaf photosynthetic characteristics and grain yield of winter wheat were investigated. [Result] Foliar spraying of seaweed bio-organic fertilizer showed little effect on plant height of winter wheat, thickened stems, promoted dry matter accumulation, in- creased flag leaf photosynthetic rate by 3.16%, and increased yield of winter wheat by 6.85%. [Conclusion] Foliar spraying of seaweed bio-organic fertilizer promoted the intelligent growth, thickened the stems, improved the lodging resistance, significantly increased the panicle weight per plant, and increased the bulk density of winter wheat, as well as improving the physical quality of wheat grain. In addition, foliar spraying of seaweed bio-organic fertilizer promoted the synthesis of chlorophyll and mitigated the decomposition of chlorophyll in winter wheat. Under the background of fertilizer-pesticide double reduction, the test results and data of this study can be promoted in the wheat-growing areas of Shandong Province and even whole China.
文摘The authors constructed a simplified model of spring wheat (Triticum aestivum L.) carbon assimilation and dry matter accumulation (DMA) process which consisted of two independent variables, day length (L) and total daily radiation (TDR). Leaf water potential (Ψ) was incorporated into the simplified growth model based on the assumption that both light use efficiency (α) and CO 2 conductance of assimilation (g c) were depressed by water limitation. Finally,Ψ was estimated from a regression equation in which the independent variables were relative soil water content in the upper 80 cm (θ R,80 ), ambient temperature (T a), vapor pressure deficit (VPD), the cumulative leaf water potential below thresholds of -1.5 MPa (Ψ c,1.5 ). Some applications in research program of field experiment of atmosphere_land surface processes in Heihe River region were tested. The simulated data agreed well with the data observed at Linze oasis in 1989 for various levels of water supply and at Zhangye oasis in 1992 in the field. The analysis and simulation using the model demonstrated that the simplified growth model could describe very well the DMA process of spring wheat with and without water limitation in the region of HEIFE (Heihe field experiment).
基金Supported by the Effect and Mechanism of Gel-based Controlled Release Fertilizers on Controlling the Nutrient Loss in Soil Erosion (10501-291)Research and Demonstration of New Special Fertilizer for Seawater Fishes and Shellfish (2012-931)+1 种基金Key Techniques and Demonstration of Tobacco Controlled Release Fertilizer Industrialization (2012-045)Research and Application of Gel-based Controlled Release Fertilizers (2002N002)~~
文摘[Objective] This study aimed to investigate the effects of gel-based controlled release fertilizers (CRFs) on agronomic characteristics and physiological indices of corn. [Method] Pot experiment was carried out to investigate the agronomic characteristics and physiological indices of corn fertilized with controlled release fertilizers compared with conventional fertilizer (CF). [Result] Plant height, stem girth, leaf area and root volume of corn were significantly increased under the CRF treatments; photosynthetic rate and soluble protein content were also improved. Dry matter accumulations under the two CRF treatments were increased by 21.3% and 17.0% compared with CF application at one time (CF1), and 19.6% and 15.4% with CF application at two times (CF2), respectively. Accumulation amounts of N, P and K in whole plant under the two CRF treatments were increased by 44.0% -24.7% , 40.0%-25.9% and 20.1% -13.9% ; and the nutrient use efficiencies of N, P and K were improved by 22.9% -13.4% , 11.2% -9.6% and 17.5% -12.1% , respectively. [Conclusion] The results implied that the CRFs could significantly improve nutrient use efficiency and plant yield.
文摘In order to select the suitable soil for transplanting tobacco in Hunan to- bacco growing areas, pot experiment was conducted to study the effects of different transplanting nutdent soils on the growth and dry matter accumulation of tobacco. The results indicated that the treatments of transplanting with nutrition soils were better than the control group. For the underground part, transplanting nutrient soil could effectively improve the root activity of tobacco plants, and increase root volume, root surface area, total root length, as well as the number of root tips and the number of root branches. For the aboveground part, transplanting nutrient soil could remarkably improve the plant height, stem girth, leaf number and maximum leaf area, and could simultaneously significantly increase the dry matter accumulation. By comparison, peat + mushroom residue + saw dust + straw powder + bicchar + root promoting nutrient solution was the most effective treatment, and the effect of sole application of nutrient solution was limited. In conclusion, transplanting with nutrition soil could effectively promote the growth and dry matter accumulation of tobacco.
基金Supported by College Students’Innovative Experiment Plan of Hunan Agricultural University(XCX16132)Project of Tobacco Monopoly Bureau of Hunan Province(xx15-18Aa01)~~
文摘In order to clarify the relationships between soil pH and flue-cured tobacco growth and dry matter accumulation, effects of soil pH on root morphology and vigor, aboveground agronomic traits and dry matter accumulation of flue-cured tobacco were investigated by pot experiment. The results showed that on the whole, the intensity of soil pH on flue-cured tobacco growth and dry matter accumulation ranked as pH=6's 〉 pH=7's 〉 pH=5's 〉 pH=4's 〉 pH=8's. Acidic soil (pH=4) was not conducive to the early growth of tobacco plants, reduced root vigor and affected dry matter accumulation; and alkaline soil (pH=8) was not conducive to the growth of tobacco roots and shoot, reduced root vigor and affected dry matter accumulation. In conclusion, the suitable pH of soil for growth of flue-cured tobacco in Xiangxi is 5-7, but weakly acidic soil is the best.
基金Project supported by the Jiangsu Provincial Natural Science Foundation of China (No.BK99034) the National Natural Science Foundation of China (No. 29890280-1)
文摘Through a pot culture lanthanum nitrate was applied to maize seedlings grown in a red loamy soil to investigate the physiological and toxic effects of added La on the growth of crop seedlings and La bioaccumulation to help understand the environmental chemistry behaviors of rare earth element as fertilizers in soils. Compared to the control, La concentrations in shoots and especially in roots of maize seedlings increased with an increase of La in the soil. Also, with added concentrations of La≥0.75 g La kg-1 soil and≥0.05 g La kg-1 soil, the dry weight of shoots and roots of maize seedlings was significantly reduced (P≤0.05), respectively, compared with the control. Additionally, La≥0.5 g kg-1 in the soil significantly inhibited (P≤0.05) primary root elongation. Roots were more sensitive to La stress than shoots and thus could be used as a biomarker to La stress. Overall, in the red loamy soil studied, La had no significant beneficial effects on the growth of maize at the added La levels above 0.1 g kg-1 soil.
基金Project supported by the National High Technology Research and Development Program (863 Program) of China(No. 2006AA10A303)the Post-Doctoral Program of Jiangsu Province, China (No. 0602027C)
文摘Photosynthetic production is a major determinant of final yield in crop plants. A simulation model was developed for canopy photosynthesis and dry matter accumulation in oilseed rape (Brassica napus L.) based on the ecophysiological processes and using a three-layer radiation balance scheme for calculating the radiation interception and absorption by the layers of flowers, pods, and leaves within the canopy. Gaussian integration method was used to calculate photosynthesis of the pod and leaf layers, and the daily total canopy photosynthesis was determined by the sum of photosynthesis from the two layers of green organs. The effects of physiological age, temperature, nitrogen, and water deficit on maximum photosynthetic rate were quantified. Maintenance and growth respiration were estimated to determine net photosynthetic production. Partition index of the shoot in relation to physiological development time was used to calculate shoot dry matter from plant biomass and shoot biomass loss because of freezing was quantified by temperature effectiveness. Testing of the model for dynamic dry matter accumulation through field experiments of different genotypes, sowing dates, and nitrogen levels showed good fit between the observed and simulated data, with an average root mean square error of 10.9% for shoot dry matter. Thus, the present model appears to be reliable for the prediction of photosynthetic production in oilseed rape.
基金Project(TD2011-01)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20133050)supported by the China Scholarship Council
文摘Negative effect of precipitation on plant photosynthesis was investigated in this work. Stomatal conductance, transpiration rate and net photosynthetic rate were measured before and after each precipitation event, respectively, and the corresponding precipitation was recorded as well. Moreover, plant dry matter accumulation was counted at the end of our entire experiment. The results show that precipitation fully demonstrates its negative effect on plant photosynthesis under the condition of without water shortage. Although it has not been proved, leaf shape seems to be associated with this effect. Broad-leaved species are less influenced than coniferous and lanceleaf species no matter on the length of variation time or changes in variation values. The different situation among three broad-leaved species seems to illustrate that the effect is also related to the size of single leaf area. The correlation between precipitation and photosynthetic rate variation is analogous to the relationship between precipitation and splash erosion, and in the view of the relationship between plant photosynthetic characteristics and dry mass accumulation, it can be thought that it can reflect the negative impact of precipitation on plant growth by making use of splash erosion. Therefore, a section was added in the traditional plant biomass estimation algorithms by using eco-physiological models, and this was proved to enhance the accuracy of traditional estimation from preliminary verifications.
文摘Screening cultivars to grow under conditions of low phosphorus (P) availability and utilize P efficiently from compounds of low solubility in soils may be beneficial to overcome poor plant growth in P-deficient soils. The growth behavior and P utilization efficiency of seven wheat cultivars grown in hydroponics were studied, using rock phosphate as P source. The wheat cultivars grown for 30 days were significantly different in biomass accumulation, P uptake and P utilization efficiency. The dry matter production of all the cultivars was significantly correlated with P uptake, which in turn correlated to the drop in the root medium pH. The ranking of wheat cultivars on the basis of dry matter yield, P uptake and P utilization efficiency was Zamindar 80 > Yecora > C 271 > WL 711 > Barani 83 > PARI 73 > Rohtas. The cultivar Zamindar 80 appeared to possess the best growth potential in P-deficient soils.
文摘The goal of our study is to present results about the effects of selected industrial wastes-sewage sludge, lime sludge, compost-on the physiological parameters of plants. Maize seedlings (Zea mays L cvs. Norma SC) were used in soil plant (rhizobox) and nutrient solution plant system. The filtrates of the examined materials were used in the nutrient solution and the raw materials in the soil. Dry matter accumulation of shoots and roots, relative chlorophyll contents and the contents of some elements were measured in the plants grown on the nutrient solution. The examined materials contain some useful elements for plants e.g. Cu, Fe, K, and Mg and plenty of toxic metals e.g. AI, Cr. Root growth in the rhizoboxes was monitored, as well as that of roots in the experiment using soil. This type of growth was more intensive with the use of lime sludge than with of sewage sludge. On the other hand, the results were better at the sewage sludge than the lime sludge on the nutrient solution.
基金funded by China-Australia Joint Science and Technology Commission (2010DFA31260)China-Canada Joint Health Research Initiative (81010064)
文摘When our knowledge of a field accumulates to a certain level,we are bound to see the rise of one or more great scientists.They will make a series of grand discoveries/breakthroughs and push the discipline into an 'age of grand discoveries'.Mathematics,geography,physics and chemistry have all experienced their ages of grand discoveries;and in life sciences,the age of grand discoveries has appeared countless times since the 16th century.Thanks to the ever-changing development of molecular biology over the past 50 years,contemporary life science is once again approaching its breaking point and the trigger for this is most likely to be 'lifeomics'.At the end of the 20th century,genomics wrote out the 'script of life';proteomics decoded the script;and RNAomics,glycomics and metabolomics came into bloom.These 'omics',with their unique epistemology and methodology,quickly became the thrust of life sciences,pushing the discipline to new high.Lifeomics,which encompasses all omics,has taken shape and is now signalling the dawn of a new era,the age of grand discoveries.