Production of 6-aminopenicillanic acid (6-APA) by hydrolysis using penicillin acylase (PA) was studied as a model of an enzymatic emulsion liquid membrane (ELM) process. The loss of PA activity was examined for variou...Production of 6-aminopenicillanic acid (6-APA) by hydrolysis using penicillin acylase (PA) was studied as a model of an enzymatic emulsion liquid membrane (ELM) process. The loss of PA activity was examined for various membrane compositions (organic solvent, surfactant, carrier). The effects of some experimental variables on the stability of emulsion were investigated. It was found that the choice of organic solvent greatly affected the stability of the emulsion. Increasing the concentration of the carrier in the membrane phase increases the transfer rate of substrate and products but also has a destabilizing effect on the emulsion. The recovery of 6-APA obtained by a di-carrier system (N263-N1923) was much higher than those when either of the di-carriers was used separately. The whole process was controlled both by the enzymatic reaction rate and by the transfer rate of the substrate and the products, however, the ratio of them could be changed by varying the composition of the system. For an optimum condition, it was obtained that the recovery ratio of 6-APA was over 80% and the conversion of benzyl penicillin (PG) was up to 90% in the external phase after 30 minutes. Meanwhile, the breakage percentage of the emulsion was less than 2%.展开更多
Invertase is a key enzyme in sucrose catabolism and crucial for plant assimilate distribution. With the development of molecularbiology, a lot of invertsae genes were cloned recently, and significant progress have bee...Invertase is a key enzyme in sucrose catabolism and crucial for plant assimilate distribution. With the development of molecularbiology, a lot of invertsae genes were cloned recently, and significant progress have been made in regulators on the expression of invertase genes.Thus, this article summarized theresearch progress of invertase in biological characteristics, molecular characteristics and expression regulation.展开更多
Nicotine [3-(1-methyl-2-pyrrolidinyl)-pyridine], a major alkaloid in tobacco products, has proven to be a potential genotoxic compound. Some polyphenolic compounds can suppress the DNA adduction, and hence act as the ...Nicotine [3-(1-methyl-2-pyrrolidinyl)-pyridine], a major alkaloid in tobacco products, has proven to be a potential genotoxic compound. Some polyphenolic compounds can suppress the DNA adduction, and hence act as the potential inhibitors of carcinogenesis. In this study, the inhibitory effects of three polyphenolic compounds, curcumin (diferuloylmethane), resveratrol (trans-3, 5, 4-trihydroxystilbene) and tea polyphenols, on the nicotine-DNA adduction have been investigated in vitro using radiolabelled nicotine and liquid scintillation counting (LSC) technique. Also, the inhibition mechanism of these chemopreventive agents in regard to the activity of the biotransformation enzymes, including cytochrome P450 (CYP450), cytochrome b5 (CYb5) and glutathione S-transferase (GST), has been studied. The results demonstrated that these three polyphenols induced marked dose-dependent decrease in nicotine-DNA adducts as compared with the controls. The elimination rate of adducts reached above 46% at the highest dose for all the three agents with 51.6% for resveratrol. Correspondingly, three polyphenols all suppressed CYP450 and CYb5, whereas curcumin and resveratrol induced GST. We may arrive at a point that the three polyphenols are beneficial to prevent the nicotine adduct formation, and thus may be used to block the potential carcinogenesis induced by nicotine.展开更多
AIM:To examine the effects of 2,4-dihydroxybenzophenone(BP-1),a benzophenone derivative used as an ultraviolet light absorbent,on acetaminophen(APAP)induced hepatotoxicity in C57BL/6J mice.METHODS:Mice were administer...AIM:To examine the effects of 2,4-dihydroxybenzophenone(BP-1),a benzophenone derivative used as an ultraviolet light absorbent,on acetaminophen(APAP)induced hepatotoxicity in C57BL/6J mice.METHODS:Mice were administered orally with BP-1 at doses of 200,400 and 800 mg/kg body weight respectively every morning for 4 d before a hepatotoxic dose of APAP(350 mg/kg body weight) was given subcutaneously.Twenty four hours after APAP intoxication,the serum enzyme including serum alaine aminotransferase(ALT),aspartate aminotransferase(AST),lactate dehydrogenase(LDH) were measured and liver histopathologic changes were examined.RESULTS:BP-1 administration dramatically reduced serum ALT,AST and LDH levels.Liver histopathological examination showed that BP-1 administration antagonized APAP-induced liver pathological damage in a dose-dependent manner.Further tests showed that APAP-induced hepatic lipid peroxidation was reduced significantly by BP-1 pretreatment,and glutathione depletion was ameliorated obviously.CONCLUSION:BP-1 can effectively protect C57BL/6J mice from APAP-induced hepatotoxicity,and reduction of oxidative stress might be part of the protection mechanism.展开更多
Determining how soil erosion affects enzyme activity may enhance our understanding of soil degradation on eroded agricultural landscapes. This study assessed the changes in enzyme activity with slope position and eros...Determining how soil erosion affects enzyme activity may enhance our understanding of soil degradation on eroded agricultural landscapes. This study assessed the changes in enzyme activity with slope position and erosion type by selecting water and tillage erosion-dominated slopes and performing analyses using the 1376s technique. The 137Cs data revealed that soil loss occurred in the upper section of the two eroded slope types, while soil accumulation occurred in the lower section. The invertase activity increased downslope and exhibited a pattern similar to the 137Cs data. The spatial patterns of urease and alkaline phosphatase activities were similar to the 137Cs inventories on the water and tillage erosion-dominated slopes, respectively. On both the eroded slope types, the invertase activity and soil organic carbon content were correlated, but no correlation was observed between the alkaline phosphatase activity and total phosphorus content. Nevertheless, the urease activity was correlated with the total nitrogen content only on the water erosion-dominated slopes. The enzyme activity-to-microbial biomass carbon ratios indicated high activities of invertase and urease but low activity of phosphatase on the water erosion-dominated slopes compared with the tillage erosion-dominated slopes. Both the invertase activity and the invertase activity-to-microbial biomass carbon ratio varied with the slope position. Changes in the urease activity-to-microbial biomass carbon ratio were significantly affected by the erosion type. These suggested that the dynamics of the invertase activity were linked to soil redistribution on the two eroded slope types, whereas the dynamics of the urease and alkaline phosphatase activities were associated with soil redistribution only on the water or tillage erosion-dominated slopes, respectively. The erosion type had an obvious effect on the activities of invertase, urease and alkaline phosphatase. Soil redistribution might influence the involvement of urease in the N cycle and alkaline phosphatase in the P cycle. Thus, enzyme activity-to-microbial biomass ratios may be used to better evaluate microbiological activity in eroded soils.展开更多
基金the National Natural Science Foundation of China (No. 29136130).
文摘Production of 6-aminopenicillanic acid (6-APA) by hydrolysis using penicillin acylase (PA) was studied as a model of an enzymatic emulsion liquid membrane (ELM) process. The loss of PA activity was examined for various membrane compositions (organic solvent, surfactant, carrier). The effects of some experimental variables on the stability of emulsion were investigated. It was found that the choice of organic solvent greatly affected the stability of the emulsion. Increasing the concentration of the carrier in the membrane phase increases the transfer rate of substrate and products but also has a destabilizing effect on the emulsion. The recovery of 6-APA obtained by a di-carrier system (N263-N1923) was much higher than those when either of the di-carriers was used separately. The whole process was controlled both by the enzymatic reaction rate and by the transfer rate of the substrate and the products, however, the ratio of them could be changed by varying the composition of the system. For an optimum condition, it was obtained that the recovery ratio of 6-APA was over 80% and the conversion of benzyl penicillin (PG) was up to 90% in the external phase after 30 minutes. Meanwhile, the breakage percentage of the emulsion was less than 2%.
文摘Invertase is a key enzyme in sucrose catabolism and crucial for plant assimilate distribution. With the development of molecularbiology, a lot of invertsae genes were cloned recently, and significant progress have been made in regulators on the expression of invertase genes.Thus, this article summarized theresearch progress of invertase in biological characteristics, molecular characteristics and expression regulation.
基金Supported by the National Natural Science Foundation of China(Grant No.19935020)
文摘Nicotine [3-(1-methyl-2-pyrrolidinyl)-pyridine], a major alkaloid in tobacco products, has proven to be a potential genotoxic compound. Some polyphenolic compounds can suppress the DNA adduction, and hence act as the potential inhibitors of carcinogenesis. In this study, the inhibitory effects of three polyphenolic compounds, curcumin (diferuloylmethane), resveratrol (trans-3, 5, 4-trihydroxystilbene) and tea polyphenols, on the nicotine-DNA adduction have been investigated in vitro using radiolabelled nicotine and liquid scintillation counting (LSC) technique. Also, the inhibition mechanism of these chemopreventive agents in regard to the activity of the biotransformation enzymes, including cytochrome P450 (CYP450), cytochrome b5 (CYb5) and glutathione S-transferase (GST), has been studied. The results demonstrated that these three polyphenols induced marked dose-dependent decrease in nicotine-DNA adducts as compared with the controls. The elimination rate of adducts reached above 46% at the highest dose for all the three agents with 51.6% for resveratrol. Correspondingly, three polyphenols all suppressed CYP450 and CYb5, whereas curcumin and resveratrol induced GST. We may arrive at a point that the three polyphenols are beneficial to prevent the nicotine adduct formation, and thus may be used to block the potential carcinogenesis induced by nicotine.
基金Supported by Drug Innovation Program of National Science and Technology Project, No. 2009ZX09103-007
文摘AIM:To examine the effects of 2,4-dihydroxybenzophenone(BP-1),a benzophenone derivative used as an ultraviolet light absorbent,on acetaminophen(APAP)induced hepatotoxicity in C57BL/6J mice.METHODS:Mice were administered orally with BP-1 at doses of 200,400 and 800 mg/kg body weight respectively every morning for 4 d before a hepatotoxic dose of APAP(350 mg/kg body weight) was given subcutaneously.Twenty four hours after APAP intoxication,the serum enzyme including serum alaine aminotransferase(ALT),aspartate aminotransferase(AST),lactate dehydrogenase(LDH) were measured and liver histopathologic changes were examined.RESULTS:BP-1 administration dramatically reduced serum ALT,AST and LDH levels.Liver histopathological examination showed that BP-1 administration antagonized APAP-induced liver pathological damage in a dose-dependent manner.Further tests showed that APAP-induced hepatic lipid peroxidation was reduced significantly by BP-1 pretreatment,and glutathione depletion was ameliorated obviously.CONCLUSION:BP-1 can effectively protect C57BL/6J mice from APAP-induced hepatotoxicity,and reduction of oxidative stress might be part of the protection mechanism.
基金the financial support for this study provided by the National Natural Science Foundation of China (No. 41001157)the 135 Strategic Program of the Institute of Mountain Hazards and the Environment,Chinese Academy of Sciences (No.SDS-135-1206)the Young Teacher Foundation of Henan Polytechnic University, China
文摘Determining how soil erosion affects enzyme activity may enhance our understanding of soil degradation on eroded agricultural landscapes. This study assessed the changes in enzyme activity with slope position and erosion type by selecting water and tillage erosion-dominated slopes and performing analyses using the 1376s technique. The 137Cs data revealed that soil loss occurred in the upper section of the two eroded slope types, while soil accumulation occurred in the lower section. The invertase activity increased downslope and exhibited a pattern similar to the 137Cs data. The spatial patterns of urease and alkaline phosphatase activities were similar to the 137Cs inventories on the water and tillage erosion-dominated slopes, respectively. On both the eroded slope types, the invertase activity and soil organic carbon content were correlated, but no correlation was observed between the alkaline phosphatase activity and total phosphorus content. Nevertheless, the urease activity was correlated with the total nitrogen content only on the water erosion-dominated slopes. The enzyme activity-to-microbial biomass carbon ratios indicated high activities of invertase and urease but low activity of phosphatase on the water erosion-dominated slopes compared with the tillage erosion-dominated slopes. Both the invertase activity and the invertase activity-to-microbial biomass carbon ratio varied with the slope position. Changes in the urease activity-to-microbial biomass carbon ratio were significantly affected by the erosion type. These suggested that the dynamics of the invertase activity were linked to soil redistribution on the two eroded slope types, whereas the dynamics of the urease and alkaline phosphatase activities were associated with soil redistribution only on the water or tillage erosion-dominated slopes, respectively. The erosion type had an obvious effect on the activities of invertase, urease and alkaline phosphatase. Soil redistribution might influence the involvement of urease in the N cycle and alkaline phosphatase in the P cycle. Thus, enzyme activity-to-microbial biomass ratios may be used to better evaluate microbiological activity in eroded soils.