Objective] This study was performed to investigate the trait changes and their correlations as wel as the dynamic changes of biological yield of Xuzishu 3, which wil help to enhance the yield and anthocyanin content o...Objective] This study was performed to investigate the trait changes and their correlations as wel as the dynamic changes of biological yield of Xuzishu 3, which wil help to enhance the yield and anthocyanin content of sweetpotato by cul-tivation. [Method] We systematical y measured the agronomic traits, qualitative char-acters and biological yield of Xuzishu 3 during six growing periods to investigate the dynamic changes of its essential characters and yield accumulation. [Result] The characters of Xuzishu 3 appeared most prosperous after the 90th d except for an-thocyanin content. Extremely significant positive correlations were found between ev-ery two of the dry matter rates of above-ground parts (including leaf petioles, leaves and stems), reducing sugar content and potato weight per plant. Assimilated product distributed more in stems and leaves than in storage roots before the 90th d in growing period. Photosynthetic capacity and net assimilation rate gradual y de-creased after the 90th d, but the assimilated product distributing to storage roots in-creased quickly and maximized in the 135th d. [Conclusion] Xuzishu 3 is a late ma-turing variety requiring more fertilizer, and the accumulation of anthocyanin fluctuates during the growth period of Xuzishu 3. So yield of Xuzishu 3 can be increased by applying more fertilizer and extending the growth period reasonably, meanwhile the anthocyanin content can be increased by means of control ing temperature, light, water and phytohormone within 60 d after planting.展开更多
To better ascertain leaf, stem and flower traits, and analyze aboveground allocation during the vegetation period, three sampling vegetation transects were settled and reed samples were collected at intervals to deter...To better ascertain leaf, stem and flower traits, and analyze aboveground allocation during the vegetation period, three sampling vegetation transects were settled and reed samples were collected at intervals to determine morphological parameters and dry and wet weights in Jiaozhou Bay wetland. Remote sensing data were also combined to evaluate regional biomass through EVI regression models. Results show that growth dynamics of leaves and stems changed during the vegetation period. Stem length increased rapidly and peaked in September(194.40 ± 23.89 cm), whereas leaf width peaked in July. There was a significantly negative correlation between stem length and stem diameter with a value of-0.785. Stem biomass was higher than that of leaves, and the maximum value of aboveground biomass was 27.17 ± 3.56 g. F/C exhibited a tendency to increase and values ranged from 0.37–0.76. The aboveground biomass of sample plots reached a peak of 2356 ± 457 g/m^2 in September. EVI was 0.05–0.5; EVI and biomass had a better fitting effect using the power-exponent model compared with other models and its function was y = 4219.30 x^0.88(R^2 = 0.7810). R^2 of the other three models ranked as linear function〉 polynomial function 〉exponent function, with the values being 0.7769, 0.7623 and 0.6963, respectively. EVI can be used to estimate vegetation biomass, and effectively solved the problems of the destructive effect to sample plots resulting from traditional harvest methods.展开更多
Flooding an extremely alkaline(pH 10.6) saline soil of the former Lake Texcoco to reduce salinity will affect the soil carbon(C)and nitrogen(N) dynamics.A laboratory incubation experiment was done to investigate how d...Flooding an extremely alkaline(pH 10.6) saline soil of the former Lake Texcoco to reduce salinity will affect the soil carbon(C)and nitrogen(N) dynamics.A laboratory incubation experiment was done to investigate how decreasing soil salt content affected dynamics of C and N in an extremely alkaline saline soil.Sieved soil with electrical conductivity(EC) of 59.2 dS m^(-1) was packed in columns,and then flooded with tap water,drained freely and conditioned aerobically at 50%water holding capacity for a month.This process of flooding-drainage-conditioning was repeated eight times.The original soil and the soil that had undergone one,two,four and eight flooding-drainage-conditioning cycles were amended with 1000 mg glucose-^(14)C kg^(-1) soil and 200 mg NH_4^+-N kg^(-1)soil,and then incubated for 28 d.The CO_2 emissions,soil microbial biomass,and soil ammonium(NE_4^+),nitrite(NO_2^-) and nitrate(NO_3^-) were monitored in the aerobic incubation of 28 d.The soil EC decreased from 59.2 to 1.0 dS m^(_1) after eight floodings,and soil pH decreased from 10.6 to 9.6.Of the added ^(14)C-labelled glucose,only 8%was mineralized in the original soil,while 24%in the soil flooded eight times during the 28-d incubation.The priming effect was on average 278 mg C kg^(-1) soil after the 28-d incubation.Soil microbial biomass C(mean 66 mg C kg^(-1) soil) did not change with flooding times in the unamended soil,and increased 1.4 times in the glucose-NH_4^+-amended soil.Ammonium immobilization and NO_2^- concentration in the aerobically incubated soil decreased with increasing flooding times,while NO_3^- concentration increased.It was found that flooding the Texcoco soil decreased the EC sharply,increased mineralization of glucose,stimulated nitrification,and reduced immobilization of inorganic N,but did not affect soil microbial biomass C.展开更多
基金Supported by Earmarked Fund for China Agriculture Research System(CARS-11-B03)Key Technology Research and Development Program of Jiangsu Province(BE2013437)the Agricultural Science Independent Innovation Foundation of Jiangsu Province[CX(11)4057]~~
文摘Objective] This study was performed to investigate the trait changes and their correlations as wel as the dynamic changes of biological yield of Xuzishu 3, which wil help to enhance the yield and anthocyanin content of sweetpotato by cul-tivation. [Method] We systematical y measured the agronomic traits, qualitative char-acters and biological yield of Xuzishu 3 during six growing periods to investigate the dynamic changes of its essential characters and yield accumulation. [Result] The characters of Xuzishu 3 appeared most prosperous after the 90th d except for an-thocyanin content. Extremely significant positive correlations were found between ev-ery two of the dry matter rates of above-ground parts (including leaf petioles, leaves and stems), reducing sugar content and potato weight per plant. Assimilated product distributed more in stems and leaves than in storage roots before the 90th d in growing period. Photosynthetic capacity and net assimilation rate gradual y de-creased after the 90th d, but the assimilated product distributing to storage roots in-creased quickly and maximized in the 135th d. [Conclusion] Xuzishu 3 is a late ma-turing variety requiring more fertilizer, and the accumulation of anthocyanin fluctuates during the growth period of Xuzishu 3. So yield of Xuzishu 3 can be increased by applying more fertilizer and extending the growth period reasonably, meanwhile the anthocyanin content can be increased by means of control ing temperature, light, water and phytohormone within 60 d after planting.
基金National Natural Science Foundation of China(41771098)Shandong Natural Science Foundation(ZR2014DQ028ZR2015DM004)
文摘To better ascertain leaf, stem and flower traits, and analyze aboveground allocation during the vegetation period, three sampling vegetation transects were settled and reed samples were collected at intervals to determine morphological parameters and dry and wet weights in Jiaozhou Bay wetland. Remote sensing data were also combined to evaluate regional biomass through EVI regression models. Results show that growth dynamics of leaves and stems changed during the vegetation period. Stem length increased rapidly and peaked in September(194.40 ± 23.89 cm), whereas leaf width peaked in July. There was a significantly negative correlation between stem length and stem diameter with a value of-0.785. Stem biomass was higher than that of leaves, and the maximum value of aboveground biomass was 27.17 ± 3.56 g. F/C exhibited a tendency to increase and values ranged from 0.37–0.76. The aboveground biomass of sample plots reached a peak of 2356 ± 457 g/m^2 in September. EVI was 0.05–0.5; EVI and biomass had a better fitting effect using the power-exponent model compared with other models and its function was y = 4219.30 x^0.88(R^2 = 0.7810). R^2 of the other three models ranked as linear function〉 polynomial function 〉exponent function, with the values being 0.7769, 0.7623 and 0.6963, respectively. EVI can be used to estimate vegetation biomass, and effectively solved the problems of the destructive effect to sample plots resulting from traditional harvest methods.
基金supported by the 'Consejo Nacional de Cienciay y Tecnologia'(CONACyT,Mexico)(research grants Nos.32479-T and 39801-Z)
文摘Flooding an extremely alkaline(pH 10.6) saline soil of the former Lake Texcoco to reduce salinity will affect the soil carbon(C)and nitrogen(N) dynamics.A laboratory incubation experiment was done to investigate how decreasing soil salt content affected dynamics of C and N in an extremely alkaline saline soil.Sieved soil with electrical conductivity(EC) of 59.2 dS m^(-1) was packed in columns,and then flooded with tap water,drained freely and conditioned aerobically at 50%water holding capacity for a month.This process of flooding-drainage-conditioning was repeated eight times.The original soil and the soil that had undergone one,two,four and eight flooding-drainage-conditioning cycles were amended with 1000 mg glucose-^(14)C kg^(-1) soil and 200 mg NH_4^+-N kg^(-1)soil,and then incubated for 28 d.The CO_2 emissions,soil microbial biomass,and soil ammonium(NE_4^+),nitrite(NO_2^-) and nitrate(NO_3^-) were monitored in the aerobic incubation of 28 d.The soil EC decreased from 59.2 to 1.0 dS m^(_1) after eight floodings,and soil pH decreased from 10.6 to 9.6.Of the added ^(14)C-labelled glucose,only 8%was mineralized in the original soil,while 24%in the soil flooded eight times during the 28-d incubation.The priming effect was on average 278 mg C kg^(-1) soil after the 28-d incubation.Soil microbial biomass C(mean 66 mg C kg^(-1) soil) did not change with flooding times in the unamended soil,and increased 1.4 times in the glucose-NH_4^+-amended soil.Ammonium immobilization and NO_2^- concentration in the aerobically incubated soil decreased with increasing flooding times,while NO_3^- concentration increased.It was found that flooding the Texcoco soil decreased the EC sharply,increased mineralization of glucose,stimulated nitrification,and reduced immobilization of inorganic N,but did not affect soil microbial biomass C.