The vertical variation and storage of nitrogen in the depth of 0-150 cm of an aquic brown soil were studied under 14 years of four land use patterns, i.e., paddy field, maize field, fallow field and woodland in Shenya...The vertical variation and storage of nitrogen in the depth of 0-150 cm of an aquic brown soil were studied under 14 years of four land use patterns, i.e., paddy field, maize field, fallow field and woodland in Shenyang Experimental Station of Ecology, Chinese Academy of Sciences in November of 2003. The results showed that different land uses had different profile distributions of soil total nitrogen (STN), alkali N, ammonium (NH4+-N) and nitrate (NO3--N). The sequence of STN storage was woodland >maize field > fallow field > paddy field, while that of NO3--N content was maize field > paddy field > woodland > fallow field, suggesting the different root biomass and biological N cycling under various land uses. The STN storage in the depth of 0-100 cm of woodland averaged to 11.41 thm-1, being 1.65 and 1.25 times as much as that in paddy and maize fields, respec-tively, while there was no significant difference between maize and fallow fields. The comparatively higher amount of NO3--N in maize and paddy fields may be due to nitrogen fertilization and anthropogenic disturbance. Soil alkali N was significantly related with STN, and the correlation could be expressed by a linear regression model under each land use (R20.929, p<0.001). Such a correlation was slightly closer in nature (woodland and fallow field) than in agro ecosystems (paddy and maize fields). Heavy N fertilization induced an excess of crop need, and led to a comparatively higher amount of soil NO3--N in cultivated fields than in fallow field and woodland. It is suggested that agroforestry practices have the potential to make a significant contribution to both crop production and environment protection.展开更多
To clarify the responses of plant functional traits to nitrogen(N) enrichment, we investigated the whole-plant traits(plant height and aboveground biomass), leaf morphological(specific leaf area(SLA) and leaf dry mass...To clarify the responses of plant functional traits to nitrogen(N) enrichment, we investigated the whole-plant traits(plant height and aboveground biomass), leaf morphological(specific leaf area(SLA) and leaf dry mass content(LDMC)) and chemical traits(leaf N concentration(LNC) and leaf phosphorus(P) concentration(LPC)) of Deyeuxia angustifolia and Glyceria spiculosa following seven consecutive years of N addition at four rates(0 g N/(m2·yr), 6 g N/(m2·yr), 12 g N/(m2·yr) and 24 g N/(m2·yr)) in a freshwater marsh in the Sanjiang Plain, Northeast China. The results showed that, for both D. angustifolia and G. spiculosa, N addition generally increased plant height, leaf, stem and total aboveground biomass, but did not cause changes in SLA and LDMC. Moreover, increased N availability caused an increase in LNC, and did not affect LPC. Thus, N addition decreased leaf C∶N ratio, but caused an increase in leaf N∶P ratio, and did not affect leaf C∶P ratio. Our results suggest that, in the mid-term, elevated N loading does not alter leaf morphological traits, but causes substantial changes in whole-plant traits and leaf chemical traits in temperate freshwater wetlands. These may help to better understand the effects of N enrichment on plant functional traits and thus ecosystem structure and functioning in freshwater wetlands.展开更多
Variations in microbial biomass C (MB-C),N (MB-N) and P (MB-P) along a gradient of different dominant vegeta- tion covers (natural forest,mixed deciduous forest,disturbed savanna and grassland ecosystems) in dry tropi...Variations in microbial biomass C (MB-C),N (MB-N) and P (MB-P) along a gradient of different dominant vegeta- tion covers (natural forest,mixed deciduous forest,disturbed savanna and grassland ecosystems) in dry tropical soils of Vindhyan Plateau,India were studied from January 2005 to December 2005.The water holding capacity,organic C,total N,total P and soil moisture content were comparatively higher in forest soils than in the savanna and grassland sites.Across different study sites the mean annual MB-C,MB-N and MB-P at 0-15 cm soil depth varied from 312.05 ± 4.22 to 653.40 ± 3.17,32.16 ± 6.25 to 75.66 ± 7.21 and 18.94 ± 2.94 to 30.83 ± 23.08 μg g ?1 dry soil,respectively.At all the investigated sites,the maximum MB-C,MB-N and MB-P occurred during the dry period (summer season) and the minimum in wet period (rainy season).In the present study,soil MB-C,MB-N and MB-P were higher at the forest sites compared to savanna and grassland sites.The differences in MB-C,MB-N and MB-P were significant (P < 0.001) among sites and seasons.The MB-C (P < 0.0001),MB-N (P < 0.001) and MB-P (P < 0.0001) were positively correlated with organic C,while the relationship between soil moisture and MB-C,MB-N and MB-P (P < 0.001,P < 0.01 and P < 0.0001,respectively) was negative.The decreasing order of MB-C,MB-N and MB-P along study ecosystems was natural forest > mixed deciduous forest > savanna > grassland.The results suggested that deforestation and land use practices (conversion of forest into savanna and grassland) caused the alterations in soil properties,which as a consequence,led to reduction in soil nutrients and MB-C,MB-N and MB-P in the soil of disturbed sites (grassland and savanna) compared to undisturbed forest ecosystems.展开更多
Cover crop and nitrogen (N) fertilization may maintain soil organic matter under bioenergy perennial grass where removal of aboveground biomass for feedstock to produce cellulosic ethanol can reduce soil quality. We...Cover crop and nitrogen (N) fertilization may maintain soil organic matter under bioenergy perennial grass where removal of aboveground biomass for feedstock to produce cellulosic ethanol can reduce soil quality. We evaluated the effects of cover crops and N fertilization rates on soil organic carbon (C) (SOC), total N (STN), ammonium N (NH4-N), and nitrate N (NO3-N) contents at the 0-5, 5-15, and 15-30 cm depths under perennial bioenergy grass from 2010 to 2014 in the southeastern USA. Treatments included unbalanced combinations of perennial bioenergy grass, energy cane (Saccharum spontaneum L.) or elephant grass (Pennisetum pur- pureum Schumazh.), cover crop, crimson clover (Trifolium incarnatum L.), and N fertilization rates (0, 100, and 200 kg N ha-l). Cover crop biomass and C and N contents were greater in the treatment of energy cane with cover crop and 100 kg N ha-1 than in the treatment of energy cane and elephant grass. The SOC and STN contents at 0-5 and 5-15 cm were 9%-20% greater in the treatments of elephant grass with cover crop and with or without 100 kg N ha-1 than in most of the other treatments. The soil NO3-N content at 0--5 cm was 31%-45% greater in the treatment of energy cane with cover crop and 100 kg N ha-1 than in most of the other treatments. The SOC sequestration increased from 0.1 to 1.0 Mg C ha-1 year-1 and the STN sequestration from 0.03 to 0.11 Mg N ha-1 year-1 from 2010 to 2014 for various treatments and depths. In contrast, the soil NH4-N and NO3-N contents varied among treatments, depths, and years. Soil C and N storages can be enriched and residual NO3-N content can be reduced by using elephant grass with cover crop and with or without N fertilization at a moderate rate.展开更多
文摘The vertical variation and storage of nitrogen in the depth of 0-150 cm of an aquic brown soil were studied under 14 years of four land use patterns, i.e., paddy field, maize field, fallow field and woodland in Shenyang Experimental Station of Ecology, Chinese Academy of Sciences in November of 2003. The results showed that different land uses had different profile distributions of soil total nitrogen (STN), alkali N, ammonium (NH4+-N) and nitrate (NO3--N). The sequence of STN storage was woodland >maize field > fallow field > paddy field, while that of NO3--N content was maize field > paddy field > woodland > fallow field, suggesting the different root biomass and biological N cycling under various land uses. The STN storage in the depth of 0-100 cm of woodland averaged to 11.41 thm-1, being 1.65 and 1.25 times as much as that in paddy and maize fields, respec-tively, while there was no significant difference between maize and fallow fields. The comparatively higher amount of NO3--N in maize and paddy fields may be due to nitrogen fertilization and anthropogenic disturbance. Soil alkali N was significantly related with STN, and the correlation could be expressed by a linear regression model under each land use (R20.929, p<0.001). Such a correlation was slightly closer in nature (woodland and fallow field) than in agro ecosystems (paddy and maize fields). Heavy N fertilization induced an excess of crop need, and led to a comparatively higher amount of soil NO3--N in cultivated fields than in fallow field and woodland. It is suggested that agroforestry practices have the potential to make a significant contribution to both crop production and environment protection.
基金Under the auspices of Strategic Priority Research Program-Climate Change:Carbon Budget and Related Issues of Chinese Academy of Sciences(No.XDA05050508)Ministry of Land and Resources Program(No.201111023,GZH201100203)Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology,Ministry of Land and Resources(No.MRE201101)
文摘To clarify the responses of plant functional traits to nitrogen(N) enrichment, we investigated the whole-plant traits(plant height and aboveground biomass), leaf morphological(specific leaf area(SLA) and leaf dry mass content(LDMC)) and chemical traits(leaf N concentration(LNC) and leaf phosphorus(P) concentration(LPC)) of Deyeuxia angustifolia and Glyceria spiculosa following seven consecutive years of N addition at four rates(0 g N/(m2·yr), 6 g N/(m2·yr), 12 g N/(m2·yr) and 24 g N/(m2·yr)) in a freshwater marsh in the Sanjiang Plain, Northeast China. The results showed that, for both D. angustifolia and G. spiculosa, N addition generally increased plant height, leaf, stem and total aboveground biomass, but did not cause changes in SLA and LDMC. Moreover, increased N availability caused an increase in LNC, and did not affect LPC. Thus, N addition decreased leaf C∶N ratio, but caused an increase in leaf N∶P ratio, and did not affect leaf C∶P ratio. Our results suggest that, in the mid-term, elevated N loading does not alter leaf morphological traits, but causes substantial changes in whole-plant traits and leaf chemical traits in temperate freshwater wetlands. These may help to better understand the effects of N enrichment on plant functional traits and thus ecosystem structure and functioning in freshwater wetlands.
基金Supported by the Scientist’s Pool Scheme of the Council of Scientific and Industrial Research, New Delhi, Government of India (No. 13(8243)/Pool-2008)
文摘Variations in microbial biomass C (MB-C),N (MB-N) and P (MB-P) along a gradient of different dominant vegeta- tion covers (natural forest,mixed deciduous forest,disturbed savanna and grassland ecosystems) in dry tropical soils of Vindhyan Plateau,India were studied from January 2005 to December 2005.The water holding capacity,organic C,total N,total P and soil moisture content were comparatively higher in forest soils than in the savanna and grassland sites.Across different study sites the mean annual MB-C,MB-N and MB-P at 0-15 cm soil depth varied from 312.05 ± 4.22 to 653.40 ± 3.17,32.16 ± 6.25 to 75.66 ± 7.21 and 18.94 ± 2.94 to 30.83 ± 23.08 μg g ?1 dry soil,respectively.At all the investigated sites,the maximum MB-C,MB-N and MB-P occurred during the dry period (summer season) and the minimum in wet period (rainy season).In the present study,soil MB-C,MB-N and MB-P were higher at the forest sites compared to savanna and grassland sites.The differences in MB-C,MB-N and MB-P were significant (P < 0.001) among sites and seasons.The MB-C (P < 0.0001),MB-N (P < 0.001) and MB-P (P < 0.0001) were positively correlated with organic C,while the relationship between soil moisture and MB-C,MB-N and MB-P (P < 0.001,P < 0.01 and P < 0.0001,respectively) was negative.The decreasing order of MB-C,MB-N and MB-P along study ecosystems was natural forest > mixed deciduous forest > savanna > grassland.The results suggested that deforestation and land use practices (conversion of forest into savanna and grassland) caused the alterations in soil properties,which as a consequence,led to reduction in soil nutrients and MB-C,MB-N and MB-P in the soil of disturbed sites (grassland and savanna) compared to undisturbed forest ecosystems.
基金the financial support of the USDA-NIFA-AFRI (Grant No. GEOX-2010-03868) for conducting this research
文摘Cover crop and nitrogen (N) fertilization may maintain soil organic matter under bioenergy perennial grass where removal of aboveground biomass for feedstock to produce cellulosic ethanol can reduce soil quality. We evaluated the effects of cover crops and N fertilization rates on soil organic carbon (C) (SOC), total N (STN), ammonium N (NH4-N), and nitrate N (NO3-N) contents at the 0-5, 5-15, and 15-30 cm depths under perennial bioenergy grass from 2010 to 2014 in the southeastern USA. Treatments included unbalanced combinations of perennial bioenergy grass, energy cane (Saccharum spontaneum L.) or elephant grass (Pennisetum pur- pureum Schumazh.), cover crop, crimson clover (Trifolium incarnatum L.), and N fertilization rates (0, 100, and 200 kg N ha-l). Cover crop biomass and C and N contents were greater in the treatment of energy cane with cover crop and 100 kg N ha-1 than in the treatment of energy cane and elephant grass. The SOC and STN contents at 0-5 and 5-15 cm were 9%-20% greater in the treatments of elephant grass with cover crop and with or without 100 kg N ha-1 than in most of the other treatments. The soil NO3-N content at 0--5 cm was 31%-45% greater in the treatment of energy cane with cover crop and 100 kg N ha-1 than in most of the other treatments. The SOC sequestration increased from 0.1 to 1.0 Mg C ha-1 year-1 and the STN sequestration from 0.03 to 0.11 Mg N ha-1 year-1 from 2010 to 2014 for various treatments and depths. In contrast, the soil NH4-N and NO3-N contents varied among treatments, depths, and years. Soil C and N storages can be enriched and residual NO3-N content can be reduced by using elephant grass with cover crop and with or without N fertilization at a moderate rate.