Coating titanium alloy with the bioceramic material hydroxyapatite(HAP) has been used to improve the poor osteoinductive properties of pure titanium alloy. But in clinical applications, the mechanical failure of HAP-c...Coating titanium alloy with the bioceramic material hydroxyapatite(HAP) has been used to improve the poor osteoinductive properties of pure titanium alloy. But in clinical applications, the mechanical failure of HAP-coated titanium alloy implant suffered at the interface of the HAP coatings and titanium alloy substrate will be a potential weakness in prosthesis. Yttria-stablized zirconia (YSZ) is expected to enhance the mechanical properties of the HAP coating and reduce the coefficient of thermal expansion difference between the coated layer and the substrate. These may reinforce the bonding strength between the coatings and the substrate. In this paper, HAP/YSZ composite coatings were cladded by laser. The effects of zirconia on the microstructure, mechanical properties and formation of tricalcium phosphate (TCP, Ca 3(PO 4) 2) of the HAP/YSZ composite coatings were evaluated. XRD, SEM and TEM were used to investigate the phase composition, microstructure and morphology of the coatings. The experimental results showed that adding YSZ in coatings was favorable to the composition and stability of HAP, and to the improvement of the adhesion strength, microhardness and microtoughness. A well uniform, crack-free coating of HAP/YSZ composites was formed on Ti-alloy substrate by laser cladding.展开更多
The oxide films were obtained in an electrolyte of calcium glycerphosphate (Ca-GP) and calcium acetate (CA) by microarc oxidation (MAO). The oxide films displayed a porous and rough structure on the film surface, and ...The oxide films were obtained in an electrolyte of calcium glycerphosphate (Ca-GP) and calcium acetate (CA) by microarc oxidation (MAO). The oxide films displayed a porous and rough structure on the film surface, and the roughness tended to increase with increasing voltage of microarc oxidation. The oxide film exhibited a uniform coating and tends to be well boned to the substrate. The thickness of oxide films depended on the final voltage at a constant concentration of electrolyte solution. Ca and P were also incorporated into the oxide film during the microarc oxidation process. It was found that the electrolyte of calcium glycerphosphate (Ca-GP) and calcium acetate (CA) was suitable for microarc oxidation to form oxide film containing Ca and P on Ti substrate. The concentration of Ca and P were 11.6 at% and 6.4 at%, respectively, when microarc oxidation was performed in the electrolyte of 0.06 M Ca-GP and 0.25 M CA at current density 50 A/m^2 and final voltage 350 V. The composition of the Ca, P and Ti changed during depth profiling. The crystalline phases were only anatase when final voltage was below 300 V and rutile was presented when voltage was up to 350 V. The microstructure, phase structure and phase composition were investigated by scanning electron microscopy (SEM), atomic force microscope (AFM), energy dispersive X-ray microanalyser (EDX), and X-ray diffraction (XRD).展开更多
The paper aims to expand the application of natural marine algae. Marine diatoms, which have intricate frustule struc- tures, can serve as bio-template for preparing three-dimensional materials. A simple and effective...The paper aims to expand the application of natural marine algae. Marine diatoms, which have intricate frustule struc- tures, can serve as bio-template for preparing three-dimensional materials. A simple and effective approach to synthesize the corru- gated agaric-like biomorphic TiO2 templated with frustule of Coscinodiscus sp. is reported. In the sol-gel preparation process, the titania-coating on the frustule is prepared through the deposition and condensation with the aid of acetylacetone (acac) as a control- ling agent to make the precursor Ti(BuO)4 hydrolyze slowly. The as-prepared titania-coated frustule and biomorphic TiOz is charac- terized by scanning electron microscopy (SEM) attached with energy dispersive X-ray spectrometer (EMAX) and X-ray diffraction (XRD). The microstructure of the corresponding titania nanoparticles appears to be sphere with the diameters distributed around 10-20nm. The templating process is repeated for three cycles. Subsequently, the three-dimensional freestanding corrugated aga- ric-like biomorphic TiO2 structure is obtained by a selective removal in the NaOH solution. As far as we known, the 3D freestanding corrugated agaric-like biomorphic TiOz with greatly increased surface area is obtained for the first time.展开更多
In order to investigate the effect of the surface morphology and resistance of the TiO2 semiconductor on current output,TiO2 nanotube array bio-anodes(TNA)are synthesized at different electrolyte temperatures,thereby ...In order to investigate the effect of the surface morphology and resistance of the TiO2 semiconductor on current output,TiO2 nanotube array bio-anodes(TNA)are synthesized at different electrolyte temperatures,thereby changing the length and surface roughness of the nanotubes.When the anodizing temperature is increased from 30 to 75℃,the length of the nanotubes increases from 1.459 to 4.183μm,which hinders the transfer of extracellular electrons to the electrodes.On the other hand,the surface roughness of TNA is significantly improved at higher temperatures,which is conducive to electron transfer.Therefore,samples processed at 45℃have the best current output performance.Compared with the treatment at 30℃under anodization,samples processed at 45℃can balance the resistance and roughness and have a higher electron transfer rate;the current output density of which is increased by 1.5 times,and the decolorization rate is increased by 0.8 times.Therefore,proper TNA surface morphology can improve the current output and the potential of wastewater treatment.展开更多
In the present work,hierarchical nanostructured titanium dioxide(TiO2) films were fabricated on Ti-25Nb-3Mo-2Sn-3Zr(TLM) alloy for biomedical applications via one-step anodization process in ethylene glycolbased elect...In the present work,hierarchical nanostructured titanium dioxide(TiO2) films were fabricated on Ti-25Nb-3Mo-2Sn-3Zr(TLM) alloy for biomedical applications via one-step anodization process in ethylene glycolbased electrolyte containing 0.5wt% NH4F.The nanostructured TiO2 films exhibited three distinct types depending on the anodization time:top irregular nanopores(INP)/beneath regular nanopores(RNP),top INP/middle regular nanotubes(RNT)/bottom RNP and top RNT with underlying RNP.The evolution of the nanostructured TiO2 films with anodization time demonstrated that self-organizing nanopores formed at the very beginning and individual nanotubes originated from underlying nanopore dissolution.Furthermore,a modified two-stage self-organizing mechanism was introduced to illustrate the growth of the nanostructured TiO2 films.Compared with TLM titanium alloy matrix,the TiO2 films with special nano-structure hold better hydrophilicity and higher specific surface area,which lays the foundation for their biomedical applications.展开更多
High-efficiency photocatalysts are of great importance to satisfy the requirements of green chemistry nowadays.Here we reported a novel solar-driven photocatalyst fabricated by a facile surface modification method,wit...High-efficiency photocatalysts are of great importance to satisfy the requirements of green chemistry nowadays.Here we reported a novel solar-driven photocatalyst fabricated by a facile surface modification method,with the two-dimensional carboxylated zinc phthalocyanine-carboxylated C60-titanium dioxide(Zn Pc-C3-Ti O2)nanosheets,in which the surface modifications of Zn Pc and C60derivative were designed to extend the absorption range and promote charge separation,respectively.Benefiting from the unique structure and positive synergetic effect,the Zn Pc-C3-Ti O2 nanocomposite shows promising applications in selective reduction of nitroarenes for high-value-added aromatic amines under solar light.Especially,for the photocatalytic reduction of nitrobenzene to aniline,the Zn Pc-C3-Ti O2 nanocomposite possesses both high efficiency and selectivity(up to 99%).展开更多
文摘Coating titanium alloy with the bioceramic material hydroxyapatite(HAP) has been used to improve the poor osteoinductive properties of pure titanium alloy. But in clinical applications, the mechanical failure of HAP-coated titanium alloy implant suffered at the interface of the HAP coatings and titanium alloy substrate will be a potential weakness in prosthesis. Yttria-stablized zirconia (YSZ) is expected to enhance the mechanical properties of the HAP coating and reduce the coefficient of thermal expansion difference between the coated layer and the substrate. These may reinforce the bonding strength between the coatings and the substrate. In this paper, HAP/YSZ composite coatings were cladded by laser. The effects of zirconia on the microstructure, mechanical properties and formation of tricalcium phosphate (TCP, Ca 3(PO 4) 2) of the HAP/YSZ composite coatings were evaluated. XRD, SEM and TEM were used to investigate the phase composition, microstructure and morphology of the coatings. The experimental results showed that adding YSZ in coatings was favorable to the composition and stability of HAP, and to the improvement of the adhesion strength, microhardness and microtoughness. A well uniform, crack-free coating of HAP/YSZ composites was formed on Ti-alloy substrate by laser cladding.
文摘The oxide films were obtained in an electrolyte of calcium glycerphosphate (Ca-GP) and calcium acetate (CA) by microarc oxidation (MAO). The oxide films displayed a porous and rough structure on the film surface, and the roughness tended to increase with increasing voltage of microarc oxidation. The oxide film exhibited a uniform coating and tends to be well boned to the substrate. The thickness of oxide films depended on the final voltage at a constant concentration of electrolyte solution. Ca and P were also incorporated into the oxide film during the microarc oxidation process. It was found that the electrolyte of calcium glycerphosphate (Ca-GP) and calcium acetate (CA) was suitable for microarc oxidation to form oxide film containing Ca and P on Ti substrate. The concentration of Ca and P were 11.6 at% and 6.4 at%, respectively, when microarc oxidation was performed in the electrolyte of 0.06 M Ca-GP and 0.25 M CA at current density 50 A/m^2 and final voltage 350 V. The composition of the Ca, P and Ti changed during depth profiling. The crystalline phases were only anatase when final voltage was below 300 V and rutile was presented when voltage was up to 350 V. The microstructure, phase structure and phase composition were investigated by scanning electron microscopy (SEM), atomic force microscope (AFM), energy dispersive X-ray microanalyser (EDX), and X-ray diffraction (XRD).
基金supported by the Key Scientific and Technological Projects of Shandong Province (2011GGX10401)
文摘The paper aims to expand the application of natural marine algae. Marine diatoms, which have intricate frustule struc- tures, can serve as bio-template for preparing three-dimensional materials. A simple and effective approach to synthesize the corru- gated agaric-like biomorphic TiO2 templated with frustule of Coscinodiscus sp. is reported. In the sol-gel preparation process, the titania-coating on the frustule is prepared through the deposition and condensation with the aid of acetylacetone (acac) as a control- ling agent to make the precursor Ti(BuO)4 hydrolyze slowly. The as-prepared titania-coated frustule and biomorphic TiOz is charac- terized by scanning electron microscopy (SEM) attached with energy dispersive X-ray spectrometer (EMAX) and X-ray diffraction (XRD). The microstructure of the corresponding titania nanoparticles appears to be sphere with the diameters distributed around 10-20nm. The templating process is repeated for three cycles. Subsequently, the three-dimensional freestanding corrugated aga- ric-like biomorphic TiO2 structure is obtained by a selective removal in the NaOH solution. As far as we known, the 3D freestanding corrugated agaric-like biomorphic TiOz with greatly increased surface area is obtained for the first time.
基金The National Major Science and Technology Project(No.2017ZX07202004-005)the Natural Science Foundation of Jiangsu Province(No.BK20171351)+2 种基金the Japan Society for the Promotion of Science(No.P 19056)the National Natural Science Foundation of China(No.51828801)the Fundamental Research Funds for the Central Universities(No.2242016K41042)。
文摘In order to investigate the effect of the surface morphology and resistance of the TiO2 semiconductor on current output,TiO2 nanotube array bio-anodes(TNA)are synthesized at different electrolyte temperatures,thereby changing the length and surface roughness of the nanotubes.When the anodizing temperature is increased from 30 to 75℃,the length of the nanotubes increases from 1.459 to 4.183μm,which hinders the transfer of extracellular electrons to the electrodes.On the other hand,the surface roughness of TNA is significantly improved at higher temperatures,which is conducive to electron transfer.Therefore,samples processed at 45℃have the best current output performance.Compared with the treatment at 30℃under anodization,samples processed at 45℃can balance the resistance and roughness and have a higher electron transfer rate;the current output density of which is increased by 1.5 times,and the decolorization rate is increased by 0.8 times.Therefore,proper TNA surface morphology can improve the current output and the potential of wastewater treatment.
基金Supported by the National Natural Science Foundation of China(No.51372169)Natural Science Foundation of Tianjin(No.11JCZDJC17300)
文摘In the present work,hierarchical nanostructured titanium dioxide(TiO2) films were fabricated on Ti-25Nb-3Mo-2Sn-3Zr(TLM) alloy for biomedical applications via one-step anodization process in ethylene glycolbased electrolyte containing 0.5wt% NH4F.The nanostructured TiO2 films exhibited three distinct types depending on the anodization time:top irregular nanopores(INP)/beneath regular nanopores(RNP),top INP/middle regular nanotubes(RNT)/bottom RNP and top RNT with underlying RNP.The evolution of the nanostructured TiO2 films with anodization time demonstrated that self-organizing nanopores formed at the very beginning and individual nanotubes originated from underlying nanopore dissolution.Furthermore,a modified two-stage self-organizing mechanism was introduced to illustrate the growth of the nanostructured TiO2 films.Compared with TLM titanium alloy matrix,the TiO2 films with special nano-structure hold better hydrophilicity and higher specific surface area,which lays the foundation for their biomedical applications.
基金supported by Beijing Natural Science Foundation(2182094)the National Natural Science Foundation of China(51772300 and 51832008)the Youth Innovation Promotion Association of CAS(2018039)。
文摘High-efficiency photocatalysts are of great importance to satisfy the requirements of green chemistry nowadays.Here we reported a novel solar-driven photocatalyst fabricated by a facile surface modification method,with the two-dimensional carboxylated zinc phthalocyanine-carboxylated C60-titanium dioxide(Zn Pc-C3-Ti O2)nanosheets,in which the surface modifications of Zn Pc and C60derivative were designed to extend the absorption range and promote charge separation,respectively.Benefiting from the unique structure and positive synergetic effect,the Zn Pc-C3-Ti O2 nanocomposite shows promising applications in selective reduction of nitroarenes for high-value-added aromatic amines under solar light.Especially,for the photocatalytic reduction of nitrobenzene to aniline,the Zn Pc-C3-Ti O2 nanocomposite possesses both high efficiency and selectivity(up to 99%).