Mg-2.7Nd-0.2Zn-0.4Zr (mass fraction, %) alloy was designed for degradable biomedical material. The ingots of the alloy were solution treated and then hot extruded. The extruded rods were heat treated with aging trea...Mg-2.7Nd-0.2Zn-0.4Zr (mass fraction, %) alloy was designed for degradable biomedical material. The ingots of the alloy were solution treated and then hot extruded. The extruded rods were heat treated with aging treatment, solution treatment and solution+aging treatment, respectively. Microstructures of the alloy were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Mechanical properties at room temperature were tested. In vitro degradation behavior of the alloy immersed in simulated body fluid was measured by hydrogen evolution and mass loss tests. The degradation morphologies of the alloy with and without degradation products were observed by SEM. The results show that the grains grow apparently after solution treatment. Solution treatment improves the elongation of as-extruded alloy significantly and decreases the strength, while aging treatment improves the strength and reduces the elongation of the alloy. The yield ratio is reduced by heat treatment. The in vitro degradation results of the alloy show that solution treatment on the as-extruded alloy results in a little higher degradation rate and aging treatment on the alloy can reduce degradation rate slightly.展开更多
Thermoplastic starch is a kind of modified starch produced by mixing starch with additives and processing the mixture in an extruder. The mechanical properties, including tensile strength and elongation at break, biod...Thermoplastic starch is a kind of modified starch produced by mixing starch with additives and processing the mixture in an extruder. The mechanical properties, including tensile strength and elongation at break, biodegradability and rheological properties were studied. Glycerol and urea, to some extent, can both decrease the tensile strength and increase percentage elongation at break, because the former acts as a plasticizer and the latter can break down interactions among starch macromolecules. Thermoplastic starch shows thermoplasticity and its melt behaves as a pseudoplastic liquid at a low shear rate. Its biodegrading extent is slightly higher than that of native starch. The molecular weight of starch displays a decreasing tendency after thermoplastic modification.展开更多
By using plate screening techniques with five phthalate esters (DMP, DEP, DBP, DEHP and DOP) as energy and carbon sources, an active strain was isolated from the sediments of Chaohu Lake, which was identified as Bur...By using plate screening techniques with five phthalate esters (DMP, DEP, DBP, DEHP and DOP) as energy and carbon sources, an active strain was isolated from the sediments of Chaohu Lake, which was identified as Burkholderia pickettil and named B. pickettii.z-1. The biodegradation of five phthalate esters by B. pick- ettii.z-1 strain was in accordance with the pseudo first-order kinetic equation: Ct = C0.e-kt. As the concentration of phthalate esters increased, the degradation rate of phthalate esters was reduced. B. pickettii.z-1 strain exhibited remarkably different degradation effects on various PAEs. Specifically, short-side-chain DMP and DEP were degraded rapidly, while long-side-chain DBP and DEHP were degraded slowly.展开更多
Magnesium alloys have good biocompatibility, but their mechanical properties and corrosion resistance may not be satisfied for using as degradable materials within bone due to its high corrosion rate in the physiologi...Magnesium alloys have good biocompatibility, but their mechanical properties and corrosion resistance may not be satisfied for using as degradable materials within bone due to its high corrosion rate in the physiological environment. Nano β-TCP particles were added into Mg-Zn-Zr alloy to improve its microstructure and the properties. As-extruded Mg-3Zn-0.8Zr alloy and Mg-3Zn-0.8Zr/xβ-TCP (x=0.5%, 1.0% and 1.5%) composites were respectively fabricated. The grains of Mg-Zn-Zr/β-TCP composites were significantly refined. The results of the tensile tests indicate that the ultimate tensile strength and the elongation of composites were improved with the addition of β-TCP. The electrochemical test result in simulation body fluid shows that the corrosion resistance of the composites was strongly enhanced comparing with that of the alloy. The corrosion potential of Mg-3Zn0.8-Zr/1.0β-TCP composite is 1.547 V and its corrosion current density is 1.20×10 6 A/cm 2 .展开更多
Biodegradation of 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane(DDT)in soil by laccase extract from white rot fungi under different experimental conditions was investigated.DDTs,which stands for the sum of p,p′-DDE,...Biodegradation of 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane(DDT)in soil by laccase extract from white rot fungi under different experimental conditions was investigated.DDTs,which stands for the sum of p,p′-DDE,o,p′-DDT,p,p′-DDD and p,p′-DDT in soil was degraded efficiently,and the residue decreased rapidly during the first 15 days and then slowly during the period of 16-25 days.The biodegradation of DDTs in soil fitted the pseudo-first-order kinetics.For 5,10,15 and 25 days of incubation with laccase,the residue of DDTs in soil under different atmospheres was decreased by 20%-33%,34%-52%,41%-61%and 41%-69%respectively,under different flooding conditions that was decreased by 12%-17%,17%-30%,30%-45%and 35%-52%respectively, and for different soils that was decreased by 25%-34%,39%-53%,44%-58%and 47%-62%respectively.The half-life of DDTs in soil ranged from 15.07 to 32.95 days under O2,air or N2 atmospheres,23.07 to 40.71 days under different flooding conditions,and 18.78 to 28.88 days for different soils.Laccase is an efficient and safe agent for bioremediation of DDT-contaminated soil.展开更多
Mycelia pellet formed spontaneously in the process of cultivation was exploited as a biological carrier for whole-cell immobilization due to its unique structural characteristic. An innovative two-species whole-cell i...Mycelia pellet formed spontaneously in the process of cultivation was exploited as a biological carrier for whole-cell immobilization due to its unique structural characteristic. An innovative two-species whole-cell im- mobilization system was achieved by inoculating the marine-derived fungus Pestalotiopsis sp. J63 spores into cul- ture medium containing another fungus Penicillium janthinellum P1 pre-grown mycelia pellets for 2 days without any pretreatment. In order to evaluate the biological degradation capacity of this novel constructed immobilization system, the immobilized pellets were applied to treat paper mill effluent and decolorize dye Azure B. The use of the constructed immobilization system in the effluent resulted in successful and rapid biodegradation of numerous in- soluble fine fibers. The optimum conditions of immobilized procedure for maximum biodegradation capacity were determined using orthogonal design with biomass of P1 pellets 10 g (wet mass), concentration of J63 spore 2x109 mlq, and immobilization time 2 d. The results demonstrate that immobilized pellets have more than 99% biodegradation capacity in a ten-hour treatment process. The kinetics of biodegradation fits the Michaelis-Menten equation well. Besides, the decolorization capability of immobilized pellets is more superior than that of P1 mycelia pellets. Overall, the present study offers a simple and reproducible way to construct a two-species whole-cell immobiliza- tion system for sewage treatment.展开更多
The biodegradability and biocompatibility of porous Mg-2Zn(mass fraction, %) scaffolds coated with nano hydroxyapatite(HAP) were investigated. The nano HAP coating on Mg-2Zn scaffolds was prepared by the pulse ele...The biodegradability and biocompatibility of porous Mg-2Zn(mass fraction, %) scaffolds coated with nano hydroxyapatite(HAP) were investigated. The nano HAP coating on Mg-2Zn scaffolds was prepared by the pulse electrodeposition method. The as-deposited scaffolds were then post-treated with alkaline solution to improve the biodegradation behavior and biocompatibility for implant applications. The microstructure and composition of scaffold and nano HAP coating, as well as their degradation and cytotoxicity behavior in simulated body fluid(SBF) were investigated. The post-treated coating is composed of needle-like HAP with the diameter less than 100 nm developed almost perpendicularly to the substrate, which exhibits a similar composition to natural bone. It is found that the products of immersion in SBF are identified to be HAP,(Ca,Mg)3(PO4)2 and Mg(OH)2. The bioactivity, biocompatibility and cell viabilities for the as-coated and post-treated scaffold extracts are higher than those for the uncoated scaffold. MG63 cells are found to adhere and proliferate on the surface of the as-coated and post-treated scaffolds, making it a promising choice for medical application. The results show that the pulse electrodeposition of nano HAP coating and alkaline treatment is a useful approach to improve the biodegradability and bioactivity of porous Mg-Zn scaffolds.展开更多
Chitosan, an excellent biomedical material, has received a widespread in vivo application. In contrast, its metabolism and distribution once being implanted were less documented. In this study, the pharmacokinetics an...Chitosan, an excellent biomedical material, has received a widespread in vivo application. In contrast, its metabolism and distribution once being implanted were less documented. In this study, the pharmacokinetics and biodegradation of fluorescein isothiocyanate(FITC) labeled and muscle implantation administrated chitosan in rats were investigated with fluorescence spectrophotometry, histological assay and gel chromatography. After implantation, chitosan was degraded gradually during its distribution to diverse organs. Among the tested organs, liver and kidney were found to be the first two highest in chitosan content, which was followed by heart, brain and spleen. Urinary excretion was believed to be the major pathway of chitosan elimination, yet 80% of chitosan administered to rats was not trackable in their urine. This indicated that the majority of chitosan was degraded in tissues. In average, the molecular weight of the degradation products of chitosan in diverse organs and urine was found to be <65 k Da. This further confirmed the in vivo degradation of chitosan. Our findings provided new evidences for the intensive and safe application of chitosan as a biomedical material.展开更多
In recent decades, a growing worldwide trend of developing the biodegradable lubricants has been prevailing to form a specific field of green chemistry and green engineering. Enhancement of biodegradability of unreadi...In recent decades, a growing worldwide trend of developing the biodegradable lubricants has been prevailing to form a specific field of green chemistry and green engineering. Enhancement of biodegradability of unreadily biodegradable petroleum-based lubricants has as such become an urgent must. For over a decade the authors have been focusing on the improvement of biodegradability of unreadily biodegradable lubricants such as petroleum-based lubricating oils and greases. A new idea of lubricant biodegradation enhancer was put forward by the authors with the aim to stimulate the biodegradation of unreadily biodegradable lubricants by incorporating the enhancer into the lubricants in order to turn the lubricants into greener biodegradable ones and to help in situ bioremediation of lubricant-contaminated environment. This manuscript summarizes our recent efforts relating to the chemistry and technology of biodegradation enhancers for lubricants. Firstly, the chemistry of lubricant biodegradation enhancers was designed based on the principles of bioremediation for the treatment of hydrocarbon contaminated environment. Secondly, the ability of the designed biodegradation enhancers for increasing the biodegradability of unreadily biodegradable industrial lubricants was investigated through biodegradability evaluation tests, microbial population analysis, and biodegradation kinetics modeling. Finally, the impact of biodegradation enhancers on some crucial performance characteristics of lubricants such as lubricity and oxidation stability was tested via tribological evaluation and oxidation determinations. Our results have shown that the designed chemistry of nitrogenous and/or phosphorous compounds such as lauroyl glutamine, oleoyl glycine, oleic diethanolamide phosphate and lauric diethanolamide borate was outstanding in boosting biodegradation of petroleum-based lubricants which was ascribed to increase the microbial population and decrease the oil-water interfacial tension during the biodegradation process. Lubricants doped with the biodegradation enhancers exhibited much better biodegradability and higher biodegradation rate in the surrounding soils which could be well modeled by the exponential biodegradation kinetics. Furthermore, as lubricant dopants, the biodegradation enhancers also provided excellent capability in reducing friction and wear and in retarding oxidation of lubricants. In the nature of things, lubricant biodegradation enhancers, which are multi-functional not only in the improvement of biodegradability, but also in the fortification of lubricity and in the inhibition of oxidation of lubricants, are expected to be promising as a new category of lubricant additives.展开更多
A bacterial strain of the genus Pseudomonas aeruginosa was inoculated into a hydrocarbon culture medium and incubated for a definite period of time. The ability of the bacterial strain to biodegrade a hydrocarbon, viz...A bacterial strain of the genus Pseudomonas aeruginosa was inoculated into a hydrocarbon culture medium and incubated for a definite period of time. The ability of the bacterial strain to biodegrade a hydrocarbon, viz. n-hexadecane, was evaluated through determining the hexadecane concentration in the inoculated culture medium on a gas chromatograph (GC). The effect of pH value on the degrading ability of the bacterial isolate and the impact of temperature on microbial growth were also explored. Test results showed that Pseudomonas aeruginosa was markedly effective in biodegrading n-hexadecane. Furthermore, the ability of Pseudomonas aeruginosa to biodegrade n-hexadecane was different at various pH values. Pseudomonas aeruginosa provided excellent degrading ability at a pH value of 7.0. The microbial cells of Pseudomonas aeruginosa increased with an increasing incubation duration at temperatures ranging from 28 ℃ to 35 ℃, and an exponential phase of microbial growth was observed.展开更多
Based on the theory of substrate permeation through the cytoplasmic membrane,and considering the effect of initial concentration of substrate,a new kinetic model of phenol degradation process was proposed,Comparing wi...Based on the theory of substrate permeation through the cytoplasmic membrane,and considering the effect of initial concentration of substrate,a new kinetic model of phenol degradation process was proposed,Comparing with the widely used Haldane model,which is greatly dependent on the initial phenol concentration,our model can be used to simulate the phenol degradation process in a wide range of initial phenol concentration by using only one set of model parameters ,Therefore,this new kinetic model has much more potential applications to industrial design and operation.展开更多
Biodegradation parameters and kinetic characteristics for pre-treating waste strains of Klebsiella pneu-moniae were studied in laboratory scale with an insulated reactor by an innovative technique,autothermal thermo-p...Biodegradation parameters and kinetic characteristics for pre-treating waste strains of Klebsiella pneu-moniae were studied in laboratory scale with an insulated reactor by an innovative technique,autothermal thermo-philic aerobic digestion(ATAD) . Based on an Arrhenius-type equation,an empirical model was developed to corre-late the removal of total suspended solid(TSS) with the initial TSS concentration,influent reaction temperature,aeration rate and stirring rate. The reaction temperatures of the ATAD system could be raised from the ambient temperatures of 25 °C to a maximum temperature of 65 °C. The exponentials for the initial TSS concentration,aeration rate and stirring rate were 1.579,-0.8175 and-0.6549,respectively,and the apparent activation energy was 6.8774 kJ·mol-1. The correlation coefficient for the pre-exponential factor was 0.9223. The TSS removal effi-ciency predicted by the model was validated with an actual test,showing a maximum relative deviation of 10.79%. The new model has a good practicability.展开更多
The quantitative and qualitative composition of Chinese municipal solid waste (MSW) differs significantly from German waste. The focus of this paper is on whether these differences also lead to dissimilar qualities of...The quantitative and qualitative composition of Chinese municipal solid waste (MSW) differs significantly from German waste. The focus of this paper is on whether these differences also lead to dissimilar qualities of leachates during storage or landfilling. Leachates ingredients determine the appropriate treatment technique. MSW compositions of the two cities Guilin (China) and Essen (Germany), each with approx. 600 000 inhabitants, are used to simulate Chinese and German MSW types. A sequencing batch reactor (SBR) is used, combining aerobic and anaerobic reaction principles, to test the biodegradability of leachates. Leachates are tested for temperature, pH-value, redox potentials, and oxygen concentration. Chemical oxygen demand (COD) values are determined. Within 8 h, the biodegradation rates for both kinds of leachates are more than 90%. Due to the high organic content of Chinese waste, the degradation rate for Guilin MSW leachate is even higher, up to 97%. The effluent from SBR technique is suitable for direct discharge into bodies of water.展开更多
The features of organic pollutants degradation mainly characterized by bio-flocculation for step-A of adsorption-biodegredation(AB) process were studied. By investigating the relationship of extracellular polymeric ...The features of organic pollutants degradation mainly characterized by bio-flocculation for step-A of adsorption-biodegredation(AB) process were studied. By investigating the relationship of extracellular polymeric substances(EPS) with bioflocculation and introducing kinetic model of organic pollutant degradation into EPS, the kinetic model of organic pollutant degradation for step-A hioflocculation was deducted. And through the experiments, the kinetic constants were calculated as follows: k1 =0. 005 3; kc1 =1 710.7 and vmax1=10 min^-1.展开更多
基金supported by the Introducing Talents Funds of Nanjing Institute of Technology,ChinaProject(20100470030) supported by the China Postdoctoral Science Foundation
文摘Mg-2.7Nd-0.2Zn-0.4Zr (mass fraction, %) alloy was designed for degradable biomedical material. The ingots of the alloy were solution treated and then hot extruded. The extruded rods were heat treated with aging treatment, solution treatment and solution+aging treatment, respectively. Microstructures of the alloy were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Mechanical properties at room temperature were tested. In vitro degradation behavior of the alloy immersed in simulated body fluid was measured by hydrogen evolution and mass loss tests. The degradation morphologies of the alloy with and without degradation products were observed by SEM. The results show that the grains grow apparently after solution treatment. Solution treatment improves the elongation of as-extruded alloy significantly and decreases the strength, while aging treatment improves the strength and reduces the elongation of the alloy. The yield ratio is reduced by heat treatment. The in vitro degradation results of the alloy show that solution treatment on the as-extruded alloy results in a little higher degradation rate and aging treatment on the alloy can reduce degradation rate slightly.
文摘Thermoplastic starch is a kind of modified starch produced by mixing starch with additives and processing the mixture in an extruder. The mechanical properties, including tensile strength and elongation at break, biodegradability and rheological properties were studied. Glycerol and urea, to some extent, can both decrease the tensile strength and increase percentage elongation at break, because the former acts as a plasticizer and the latter can break down interactions among starch macromolecules. Thermoplastic starch shows thermoplasticity and its melt behaves as a pseudoplastic liquid at a low shear rate. Its biodegrading extent is slightly higher than that of native starch. The molecular weight of starch displays a decreasing tendency after thermoplastic modification.
基金Supported by National High Technology Research and Development Program of China(2013AA102804B)Fund of Anhui Province Environmental Protection(2013-008)~~
文摘By using plate screening techniques with five phthalate esters (DMP, DEP, DBP, DEHP and DOP) as energy and carbon sources, an active strain was isolated from the sediments of Chaohu Lake, which was identified as Burkholderia pickettil and named B. pickettii.z-1. The biodegradation of five phthalate esters by B. pick- ettii.z-1 strain was in accordance with the pseudo first-order kinetic equation: Ct = C0.e-kt. As the concentration of phthalate esters increased, the degradation rate of phthalate esters was reduced. B. pickettii.z-1 strain exhibited remarkably different degradation effects on various PAEs. Specifically, short-side-chain DMP and DEP were degraded rapidly, while long-side-chain DBP and DEHP were degraded slowly.
基金Project(51071108)supported by the National Natural Science Foundation of ChinaProject(09JCZDJC18500)supported by the Key Project of Natural Science Foundation of Tianjin,China
文摘Magnesium alloys have good biocompatibility, but their mechanical properties and corrosion resistance may not be satisfied for using as degradable materials within bone due to its high corrosion rate in the physiological environment. Nano β-TCP particles were added into Mg-Zn-Zr alloy to improve its microstructure and the properties. As-extruded Mg-3Zn-0.8Zr alloy and Mg-3Zn-0.8Zr/xβ-TCP (x=0.5%, 1.0% and 1.5%) composites were respectively fabricated. The grains of Mg-Zn-Zr/β-TCP composites were significantly refined. The results of the tensile tests indicate that the ultimate tensile strength and the elongation of composites were improved with the addition of β-TCP. The electrochemical test result in simulation body fluid shows that the corrosion resistance of the composites was strongly enhanced comparing with that of the alloy. The corrosion potential of Mg-3Zn0.8-Zr/1.0β-TCP composite is 1.547 V and its corrosion current density is 1.20×10 6 A/cm 2 .
基金Supported by the Science and Technology Planning Project of Guangdong Province of China(2008B080701012)the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education of Chinathe Leading Academic Discipline Program of Phase-3 of"Project-211"for South China Agricultural University(2009B010100001)
文摘Biodegradation of 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane(DDT)in soil by laccase extract from white rot fungi under different experimental conditions was investigated.DDTs,which stands for the sum of p,p′-DDE,o,p′-DDT,p,p′-DDD and p,p′-DDT in soil was degraded efficiently,and the residue decreased rapidly during the first 15 days and then slowly during the period of 16-25 days.The biodegradation of DDTs in soil fitted the pseudo-first-order kinetics.For 5,10,15 and 25 days of incubation with laccase,the residue of DDTs in soil under different atmospheres was decreased by 20%-33%,34%-52%,41%-61%and 41%-69%respectively,under different flooding conditions that was decreased by 12%-17%,17%-30%,30%-45%and 35%-52%respectively, and for different soils that was decreased by 25%-34%,39%-53%,44%-58%and 47%-62%respectively.The half-life of DDTs in soil ranged from 15.07 to 32.95 days under O2,air or N2 atmospheres,23.07 to 40.71 days under different flooding conditions,and 18.78 to 28.88 days for different soils.Laccase is an efficient and safe agent for bioremediation of DDT-contaminated soil.
基金Supported by the National Natural Science Foundation of China(21036005)Scientific Technology Program of Zhejiang Province(2011C33016)
文摘Mycelia pellet formed spontaneously in the process of cultivation was exploited as a biological carrier for whole-cell immobilization due to its unique structural characteristic. An innovative two-species whole-cell im- mobilization system was achieved by inoculating the marine-derived fungus Pestalotiopsis sp. J63 spores into cul- ture medium containing another fungus Penicillium janthinellum P1 pre-grown mycelia pellets for 2 days without any pretreatment. In order to evaluate the biological degradation capacity of this novel constructed immobilization system, the immobilized pellets were applied to treat paper mill effluent and decolorize dye Azure B. The use of the constructed immobilization system in the effluent resulted in successful and rapid biodegradation of numerous in- soluble fine fibers. The optimum conditions of immobilized procedure for maximum biodegradation capacity were determined using orthogonal design with biomass of P1 pellets 10 g (wet mass), concentration of J63 spore 2x109 mlq, and immobilization time 2 d. The results demonstrate that immobilized pellets have more than 99% biodegradation capacity in a ten-hour treatment process. The kinetics of biodegradation fits the Michaelis-Menten equation well. Besides, the decolorization capability of immobilized pellets is more superior than that of P1 mycelia pellets. Overall, the present study offers a simple and reproducible way to construct a two-species whole-cell immobiliza- tion system for sewage treatment.
文摘The biodegradability and biocompatibility of porous Mg-2Zn(mass fraction, %) scaffolds coated with nano hydroxyapatite(HAP) were investigated. The nano HAP coating on Mg-2Zn scaffolds was prepared by the pulse electrodeposition method. The as-deposited scaffolds were then post-treated with alkaline solution to improve the biodegradation behavior and biocompatibility for implant applications. The microstructure and composition of scaffold and nano HAP coating, as well as their degradation and cytotoxicity behavior in simulated body fluid(SBF) were investigated. The post-treated coating is composed of needle-like HAP with the diameter less than 100 nm developed almost perpendicularly to the substrate, which exhibits a similar composition to natural bone. It is found that the products of immersion in SBF are identified to be HAP,(Ca,Mg)3(PO4)2 and Mg(OH)2. The bioactivity, biocompatibility and cell viabilities for the as-coated and post-treated scaffold extracts are higher than those for the uncoated scaffold. MG63 cells are found to adhere and proliferate on the surface of the as-coated and post-treated scaffolds, making it a promising choice for medical application. The results show that the pulse electrodeposition of nano HAP coating and alkaline treatment is a useful approach to improve the biodegradability and bioactivity of porous Mg-Zn scaffolds.
基金supported funancialy by Qingdao Bio-temed Biomaterial Co.,Ltd.the National ‘Twelfth Five-Year’ Support Plan for Science&Technology of Chinia(2012BAI18B06)
文摘Chitosan, an excellent biomedical material, has received a widespread in vivo application. In contrast, its metabolism and distribution once being implanted were less documented. In this study, the pharmacokinetics and biodegradation of fluorescein isothiocyanate(FITC) labeled and muscle implantation administrated chitosan in rats were investigated with fluorescence spectrophotometry, histological assay and gel chromatography. After implantation, chitosan was degraded gradually during its distribution to diverse organs. Among the tested organs, liver and kidney were found to be the first two highest in chitosan content, which was followed by heart, brain and spleen. Urinary excretion was believed to be the major pathway of chitosan elimination, yet 80% of chitosan administered to rats was not trackable in their urine. This indicated that the majority of chitosan was degraded in tissues. In average, the molecular weight of the degradation products of chitosan in diverse organs and urine was found to be <65 k Da. This further confirmed the in vivo degradation of chitosan. Our findings provided new evidences for the intensive and safe application of chitosan as a biomedical material.
基金the financial support provided by the National Natural Science Foundation of China (project Nos.50975282 and 50275147)the Natural Science Foundation of Chongqing, China (project No. CSTC 2008BA4037)
文摘In recent decades, a growing worldwide trend of developing the biodegradable lubricants has been prevailing to form a specific field of green chemistry and green engineering. Enhancement of biodegradability of unreadily biodegradable petroleum-based lubricants has as such become an urgent must. For over a decade the authors have been focusing on the improvement of biodegradability of unreadily biodegradable lubricants such as petroleum-based lubricating oils and greases. A new idea of lubricant biodegradation enhancer was put forward by the authors with the aim to stimulate the biodegradation of unreadily biodegradable lubricants by incorporating the enhancer into the lubricants in order to turn the lubricants into greener biodegradable ones and to help in situ bioremediation of lubricant-contaminated environment. This manuscript summarizes our recent efforts relating to the chemistry and technology of biodegradation enhancers for lubricants. Firstly, the chemistry of lubricant biodegradation enhancers was designed based on the principles of bioremediation for the treatment of hydrocarbon contaminated environment. Secondly, the ability of the designed biodegradation enhancers for increasing the biodegradability of unreadily biodegradable industrial lubricants was investigated through biodegradability evaluation tests, microbial population analysis, and biodegradation kinetics modeling. Finally, the impact of biodegradation enhancers on some crucial performance characteristics of lubricants such as lubricity and oxidation stability was tested via tribological evaluation and oxidation determinations. Our results have shown that the designed chemistry of nitrogenous and/or phosphorous compounds such as lauroyl glutamine, oleoyl glycine, oleic diethanolamide phosphate and lauric diethanolamide borate was outstanding in boosting biodegradation of petroleum-based lubricants which was ascribed to increase the microbial population and decrease the oil-water interfacial tension during the biodegradation process. Lubricants doped with the biodegradation enhancers exhibited much better biodegradability and higher biodegradation rate in the surrounding soils which could be well modeled by the exponential biodegradation kinetics. Furthermore, as lubricant dopants, the biodegradation enhancers also provided excellent capability in reducing friction and wear and in retarding oxidation of lubricants. In the nature of things, lubricant biodegradation enhancers, which are multi-functional not only in the improvement of biodegradability, but also in the fortification of lubricity and in the inhibition of oxidation of lubricants, are expected to be promising as a new category of lubricant additives.
基金support provided by the National Natural Science Foundation of China (project No. 50975282)the Natural Science Foundation for Outstanding Youths, Chongqing, China (project No. CSTC,2008BA4037)
文摘A bacterial strain of the genus Pseudomonas aeruginosa was inoculated into a hydrocarbon culture medium and incubated for a definite period of time. The ability of the bacterial strain to biodegrade a hydrocarbon, viz. n-hexadecane, was evaluated through determining the hexadecane concentration in the inoculated culture medium on a gas chromatograph (GC). The effect of pH value on the degrading ability of the bacterial isolate and the impact of temperature on microbial growth were also explored. Test results showed that Pseudomonas aeruginosa was markedly effective in biodegrading n-hexadecane. Furthermore, the ability of Pseudomonas aeruginosa to biodegrade n-hexadecane was different at various pH values. Pseudomonas aeruginosa provided excellent degrading ability at a pH value of 7.0. The microbial cells of Pseudomonas aeruginosa increased with an increasing incubation duration at temperatures ranging from 28 ℃ to 35 ℃, and an exponential phase of microbial growth was observed.
基金Supported by China Petroleum & Chemical Corporation (X599011).
文摘Based on the theory of substrate permeation through the cytoplasmic membrane,and considering the effect of initial concentration of substrate,a new kinetic model of phenol degradation process was proposed,Comparing with the widely used Haldane model,which is greatly dependent on the initial phenol concentration,our model can be used to simulate the phenol degradation process in a wide range of initial phenol concentration by using only one set of model parameters ,Therefore,this new kinetic model has much more potential applications to industrial design and operation.
基金Supported by the Doctoral Foundation of Northeast Dianli University (BSJXM-200814)Foundations of Bureau of Jilin Province (2008424)
文摘Biodegradation parameters and kinetic characteristics for pre-treating waste strains of Klebsiella pneu-moniae were studied in laboratory scale with an insulated reactor by an innovative technique,autothermal thermo-philic aerobic digestion(ATAD) . Based on an Arrhenius-type equation,an empirical model was developed to corre-late the removal of total suspended solid(TSS) with the initial TSS concentration,influent reaction temperature,aeration rate and stirring rate. The reaction temperatures of the ATAD system could be raised from the ambient temperatures of 25 °C to a maximum temperature of 65 °C. The exponentials for the initial TSS concentration,aeration rate and stirring rate were 1.579,-0.8175 and-0.6549,respectively,and the apparent activation energy was 6.8774 kJ·mol-1. The correlation coefficient for the pre-exponential factor was 0.9223. The TSS removal effi-ciency predicted by the model was validated with an actual test,showing a maximum relative deviation of 10.79%. The new model has a good practicability.
基金Project supported by German Ministries of the State North Rhine-Westphalia
文摘The quantitative and qualitative composition of Chinese municipal solid waste (MSW) differs significantly from German waste. The focus of this paper is on whether these differences also lead to dissimilar qualities of leachates during storage or landfilling. Leachates ingredients determine the appropriate treatment technique. MSW compositions of the two cities Guilin (China) and Essen (Germany), each with approx. 600 000 inhabitants, are used to simulate Chinese and German MSW types. A sequencing batch reactor (SBR) is used, combining aerobic and anaerobic reaction principles, to test the biodegradability of leachates. Leachates are tested for temperature, pH-value, redox potentials, and oxygen concentration. Chemical oxygen demand (COD) values are determined. Within 8 h, the biodegradation rates for both kinds of leachates are more than 90%. Due to the high organic content of Chinese waste, the degradation rate for Guilin MSW leachate is even higher, up to 97%. The effluent from SBR technique is suitable for direct discharge into bodies of water.
基金project (2004B4604A01-01) supported by the Mega-projects of Science Research for the 10th Five-Year Plan
文摘The features of organic pollutants degradation mainly characterized by bio-flocculation for step-A of adsorption-biodegredation(AB) process were studied. By investigating the relationship of extracellular polymeric substances(EPS) with bioflocculation and introducing kinetic model of organic pollutant degradation into EPS, the kinetic model of organic pollutant degradation for step-A hioflocculation was deducted. And through the experiments, the kinetic constants were calculated as follows: k1 =0. 005 3; kc1 =1 710.7 and vmax1=10 min^-1.