Biological activated carbon (BAC) has been developed on the granular activated carbon by immobilization of selected and acclimated species of bacteria to treat the micro-polluted water. The BAC removal efficiencies fo...Biological activated carbon (BAC) has been developed on the granular activated carbon by immobilization of selected and acclimated species of bacteria to treat the micro-polluted water. The BAC removal efficiencies for nitrobenzene, permanganate index, turbidity and ammonia were investigated. Effects of shock loading and SEM (Scanning Electron Microscope) observation on BAC were studied. Backwashing and its intensity of BAC were also discussed. The results showed that BAC took short time to start up and recover to the normal condition after shock loading. The shock loading studies showed that the removal efficiency of BAC was not completely inhibited even at high concentration of nitrobenzene. Backwashing performed once every 10-20 d, or an average of 15 d. Backwashing intensity was 12-14 L/(s·m2) with air and 3-4 L/(s·m2) with water.展开更多
Nitrogen pollution is an increasingly severe worldwide problem because of drainage of nitrogen-containing wastewater and intensive application of nitrogen-containing fertilizers. Denitrification, a key process in nitr...Nitrogen pollution is an increasingly severe worldwide problem because of drainage of nitrogen-containing wastewater and intensive application of nitrogen-containing fertilizers. Denitrification, a key process in nitrogen cycles, is commonly employed for nitrogen removal in engineered wastewater treatment systems. Biological denitrification is performed by denitrifying microbes(bacteria) that use nitrate as terminal electron acceptor. Better understanding the functions of diverse microbial populations in denitrification-based wastewater treatment systems, and the interactions of these populations with operating environments, is essential for improving both treatment performance and system stability. Recent advances in "meta-omics"(e.g., genomics, transcriptomics, proteomics, metabolomics), other molecular biology tools, and microbiome analysis have greatly enhanced such understanding. This minireview summarizes recent findings regarding microbial community structure and composition, key functional microbes and their physiology, functional genes involved in nitrogen cycle, and responses of microbes and their genes to changes of environmental factors or operating parameters, in denitrification processes in wastewater treatment systems. Of particular interest are heterotrophic denitrification systems(which require alternative organic carbon sources) and the autotrophic denitrification systems(which do not require an external carbon source). Integrated microbiome and-omics approaches have great future potential for determination of optimal environmental and biotechnological parameters,novel process development, and improvement of nitrogen removal efficiency and system stability.展开更多
In this paper, a model of Beddington-DeAngelies chemostat involving two species of micro-organism competing for two perfectly complementary growth-limiting nutrients and pulsed input of toxicant in the polluted enviro...In this paper, a model of Beddington-DeAngelies chemostat involving two species of micro-organism competing for two perfectly complementary growth-limiting nutrients and pulsed input of toxicant in the polluted environment was studied. Using Floquet theory and small amplitude perturbation method, a conclusion was that there exists twomicro-organism eradication periodic solution and which is global asymptotical stability. At the same time, the condition of the permanence for system was obtained. From the biological point of view, the method for protecting species is to improve the amount of impulsive period, and control the amount of toxicant input to the chemostat. Finally, our results are illustrated by numerical simulations.展开更多
文摘Biological activated carbon (BAC) has been developed on the granular activated carbon by immobilization of selected and acclimated species of bacteria to treat the micro-polluted water. The BAC removal efficiencies for nitrobenzene, permanganate index, turbidity and ammonia were investigated. Effects of shock loading and SEM (Scanning Electron Microscope) observation on BAC were studied. Backwashing and its intensity of BAC were also discussed. The results showed that BAC took short time to start up and recover to the normal condition after shock loading. The shock loading studies showed that the removal efficiency of BAC was not completely inhibited even at high concentration of nitrobenzene. Backwashing performed once every 10-20 d, or an average of 15 d. Backwashing intensity was 12-14 L/(s·m2) with air and 3-4 L/(s·m2) with water.
基金supported by the projects of National Key Research and Development Program of China (2016YFD0501409)
文摘Nitrogen pollution is an increasingly severe worldwide problem because of drainage of nitrogen-containing wastewater and intensive application of nitrogen-containing fertilizers. Denitrification, a key process in nitrogen cycles, is commonly employed for nitrogen removal in engineered wastewater treatment systems. Biological denitrification is performed by denitrifying microbes(bacteria) that use nitrate as terminal electron acceptor. Better understanding the functions of diverse microbial populations in denitrification-based wastewater treatment systems, and the interactions of these populations with operating environments, is essential for improving both treatment performance and system stability. Recent advances in "meta-omics"(e.g., genomics, transcriptomics, proteomics, metabolomics), other molecular biology tools, and microbiome analysis have greatly enhanced such understanding. This minireview summarizes recent findings regarding microbial community structure and composition, key functional microbes and their physiology, functional genes involved in nitrogen cycle, and responses of microbes and their genes to changes of environmental factors or operating parameters, in denitrification processes in wastewater treatment systems. Of particular interest are heterotrophic denitrification systems(which require alternative organic carbon sources) and the autotrophic denitrification systems(which do not require an external carbon source). Integrated microbiome and-omics approaches have great future potential for determination of optimal environmental and biotechnological parameters,novel process development, and improvement of nitrogen removal efficiency and system stability.
基金Acknowledgment This work is supported by Natural Science Foundation of Shanxi Province (2013011002-2).
文摘In this paper, a model of Beddington-DeAngelies chemostat involving two species of micro-organism competing for two perfectly complementary growth-limiting nutrients and pulsed input of toxicant in the polluted environment was studied. Using Floquet theory and small amplitude perturbation method, a conclusion was that there exists twomicro-organism eradication periodic solution and which is global asymptotical stability. At the same time, the condition of the permanence for system was obtained. From the biological point of view, the method for protecting species is to improve the amount of impulsive period, and control the amount of toxicant input to the chemostat. Finally, our results are illustrated by numerical simulations.