期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于SFS的多模态生理信号情感识别 被引量:1
1
作者 王晗 王坤侠 《安徽建筑大学学报》 2019年第4期83-87,共5页
多模态生理信号通常具有较高的维度,高维度的特征集不仅包括噪声数据和多余数据,影响分类结果,并且在情感识别过程中将花费大量的计算机开销。因此,从高维度的特征集中选取质量较优,影响因子较大的特征具有重要意义。文中主要提取血容... 多模态生理信号通常具有较高的维度,高维度的特征集不仅包括噪声数据和多余数据,影响分类结果,并且在情感识别过程中将花费大量的计算机开销。因此,从高维度的特征集中选取质量较优,影响因子较大的特征具有重要意义。文中主要提取血容量搏动信号,肌电信号,呼吸信号和皮肤电反应信号四种生理信号的平均值、标准偏差、一阶差值的绝对值的平均值、归一化信号的一阶差值的绝对值的平均值、二阶差值的绝对值的平均值、归一化信号的二阶差值的绝对值的平均值这6种统计特征,采用序列前向选择算法进行生理信号特征选择,最后用支持向量机和K近邻作为分类器对选取的特征子集进行样本集的分类,分类的精度作为衡量特征子集好坏的标准。实验结果表明,采用序列前向选择算法,可以选出比原始特征集维度更低且更优的特征子集。 展开更多
关键词 生理情感识别 序列前向选择 支持向量机 统计特征
下载PDF
基于SAE和LSTM RNN的多模态生理信号融合和情感识别研究 被引量:24
2
作者 李幼军 黄佳进 +1 位作者 王海渊 钟宁 《通信学报》 EI CSCD 北大核心 2017年第12期109-120,共12页
为了提高情感识别的分类准确率,提出一种将栈式自编码神经网络(SAE)和长短周期记忆单元循环神经网络(LSTM RNN)融合的多模态融合特征情感识别方法。该方法通过SAE对不同模态的生理特征进行信息融合和压缩,随后用LSTM RNN对长时间周期的... 为了提高情感识别的分类准确率,提出一种将栈式自编码神经网络(SAE)和长短周期记忆单元循环神经网络(LSTM RNN)融合的多模态融合特征情感识别方法。该方法通过SAE对不同模态的生理特征进行信息融合和压缩,随后用LSTM RNN对长时间周期的融合进行情感分类识别。通过将该方法用到开源数据集中进行验证,得到情感分类准确率达到0.792 6。实验结果表明,SAE对多模态生理特征进行了有效融合,LSTM RNN能够有效地对长时间周期中的关键特征进行识别。 展开更多
关键词 多模态生理信号情感识别 栈式自编码神经网络 长短周期记忆循环神经网络 多模态生理信号融合
下载PDF
ANALYSIS OF AFFECTIVE ECG SIGNALS TOWARD EMOTION RECOGNITION 被引量:2
3
作者 Xu Ya Liu Guangyuan +2 位作者 Hao Min Wen Wanhui Huang Xiting 《Journal of Electronics(China)》 2010年第1期8-14,共7页
Recently,as recognizing emotion has been one of the hallmarks of affective computing,more attention has been paid to physiological signals for emotion recognition.This paper presented an approach to emotion recognitio... Recently,as recognizing emotion has been one of the hallmarks of affective computing,more attention has been paid to physiological signals for emotion recognition.This paper presented an approach to emotion recognition using ElectroCardioGraphy(ECG) signals from multiple subjects.To collect reliable affective ECG data,we applied an arousal method by movie clips to make subjects experience specific emotions without external interference.Through precise location of P-QRS-T wave by continuous wavelet transform,an amount of ECG features was extracted sufficiently.Since feature selection is a combination optimization problem,Improved Binary Particle Swarm Optimization(IBPSO) based on neighborhood search was applied to search out effective features to improve classification results of emotion states with the help of fisher or K-Nearest Neighbor(KNN) classifier.In the experiment,it is shown that the approach is successful and the effective features got from ECG signals can express emotion states excellently. 展开更多
关键词 Emotion recognition ElectroCardioCraphy (ECG) signal Continuous wavelet transform Improved Binary Particle Swarm Optimization (IBPSO) Neighborhood search
下载PDF
Using psychophysiological measures to recognize personal music emotional experience 被引量:2
4
作者 Le-kai ZHANG Shou-qian SUN +2 位作者 Bai-xi XING Rui-ming LUO Ke-jun ZHANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第7期964-975,共12页
Music can trigger human emotion.This is a psychophysiological process.Therefore,using psychophysiological characteristics could be a way to understand individual music emotional experience.In this study,we explore a n... Music can trigger human emotion.This is a psychophysiological process.Therefore,using psychophysiological characteristics could be a way to understand individual music emotional experience.In this study,we explore a new method of personal music emotion recognition based on human physiological characteristics.First,we build up a database of features based on emotions related to music and a database based on physiological signals derived from music listening including EDA,PPG,SKT,RSP,and PD variation information.Then linear regression,ridge regression,support vector machines with three different kernels,decision trees,k-nearest neighbors,multi-layer perceptron,and Nu support vector regression(NuSVR)are used to recognize music emotions via a data synthesis of music features and human physiological features.NuSVR outperforms the other methods.The correlation coefficient values are 0.7347 for arousal and 0.7902 for valence,while the mean squared errors are 0.023 23 for arousal and0.014 85 for valence.Finally,we compare the different data sets and find that the data set with all the features(music features and all physiological features)has the best performance in modeling.The correlation coefficient values are 0.6499 for arousal and 0.7735 for valence,while the mean squared errors are 0.029 32 for arousal and0.015 76 for valence.We provide an effective way to recognize personal music emotional experience,and the study can be applied to personalized music recommendation. 展开更多
关键词 MUSIC Emotion recognition Physiological signals Wavelet transform
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部