ObjectiveThis study aimed to investigate the biodegradation effect and biodegradation mechanism of aniline aerofloat wastewater. MethodSmall-scale processing of simulated aniline aerofloat wastewater was carried out w...ObjectiveThis study aimed to investigate the biodegradation effect and biodegradation mechanism of aniline aerofloat wastewater. MethodSmall-scale processing of simulated aniline aerofloat wastewater was carried out with SBR (Sequencing Batch Reactor) system; intermediate products in the process were analyzed using high-performance liquid chromatography. ResultAccording to the experimental results, the small-scale process was basically stably operated after 40 days of activation and regulation, leading to relatively ideal degradation effect on aniline aerofloat, the COD removal efficiency reached 64.3% , degradation rate of aniline aerofloat reached 93.4%, which could be applied in the treatment of mine flotation wastewater containing such pollutant. During the degradation process, pH increased from 5.83 to 6.60 and then dropped to 6.17, which might be caused by the thiocyanate ions and aniline generated in the degradation process. Aniline aerofloat mainly produced two preliminary products during the biodegradation process: aniline and a substance that was difficult to be biodegraded under aerobic conditions, which was the main reason for the relatively high COD value in effluent. Furthermore, aniline was eventually biodegraded. ConclusionThis study provided basis for the development of biological treatment of flotation wastewater in China and showed great significance for the improvement of ecological environment around the mines.展开更多
This paper summarized the possible physiological mechanism by which anthocyanins strengthen the tolerance of plants to drought. Drought stress can in-duce plant cel s to synthesize and accumulate anthocyanins. The pho...This paper summarized the possible physiological mechanism by which anthocyanins strengthen the tolerance of plants to drought. Drought stress can in-duce plant cel s to synthesize and accumulate anthocyanins. The photochemical properties, subcel ular accumulation sites and spatial distributions in plant organs and tissues of anthocyanins determine their function of strengthening plant tolerance, which is realized by three possible physiological mechanisms: (1) anthocyanins and their chelated metal ions can optimize the osmoregulation ability of the plant cel s by directly acting as the osmoregulation substances of the cel s, (2) anthocyanins with suitable spatial locations can reduce the photoinhibition of the plants under drought stresses, (3) anthocyanins can effectively maintain and improve the active oxygen-scavenging capacity of the plant cel s under drought conditions. Therein, that the anthocyanins enhance the antioxidant capacity of the plant cel s under drought stresses is probably the main reason for the anthocyanins to strengthen the drought tolerance of plants. This review could provide a reference for the mechanism re-search of the drought resistance and the breeding of the drought-resistant cultivars for the plants holding the ability to synthesize and accumulate anthocyanins.展开更多
An ideal surrogate host for heterologous production of various natural products is expected to have efficient nutrient utilization,fast growth,abundant precursors and energy supply,and a pronounced gene expression.Str...An ideal surrogate host for heterologous production of various natural products is expected to have efficient nutrient utilization,fast growth,abundant precursors and energy supply,and a pronounced gene expression.Streptomyces albus BK3-25 is a high-yield industrial strain producing type-Ⅰ polyketide sahnomycin,with a unique ability of bean oil utilization.Its potential of being a surrogate host for heterologous production of PKS was engineered and evaluated herein.Firstly,introduction of a three-gene cassette for the biosynthesis of ethylmalonyl-CoA resulted in accumulation of ethylmalonyl-CoA precursor and sahnomycin,and subsequent deletion of the sahnomycin biosynthetic gene cluster resulted in a host with rich supplies of common polyketide precursors,including malonyl-CoA,methylmalonyl-CoA,and ethylmalonyl-CoA.Secondly,the energy and reducing force were measured,and the improved accumulation of ATP and NADPH was observed in the mutant.Furthermore,the strength of a series of selected endogenous promoters based on microarray data was assessed at different growth phases,and a strong constitutive promoter was identified,providing a useful tool for further engineered gene expression.Finally,the potential of the BK3-25 derived host ZXJ-6 was evaluated with the introduction of the actinorhodin biosynthetic gene cluster from Streptomyces coelicolor,and the heterologous production of actinorhodin was obtained.This work clearly indicated the potential of the high-yield sahnomycin producer as a surrogate host for heterologous production of polyketides,although more genetic manipulation should be conducted to streamline its performance.展开更多
基金Supported by Major Special Science and Technology Project of Guangdong Province(2010B080703035)~~
文摘ObjectiveThis study aimed to investigate the biodegradation effect and biodegradation mechanism of aniline aerofloat wastewater. MethodSmall-scale processing of simulated aniline aerofloat wastewater was carried out with SBR (Sequencing Batch Reactor) system; intermediate products in the process were analyzed using high-performance liquid chromatography. ResultAccording to the experimental results, the small-scale process was basically stably operated after 40 days of activation and regulation, leading to relatively ideal degradation effect on aniline aerofloat, the COD removal efficiency reached 64.3% , degradation rate of aniline aerofloat reached 93.4%, which could be applied in the treatment of mine flotation wastewater containing such pollutant. During the degradation process, pH increased from 5.83 to 6.60 and then dropped to 6.17, which might be caused by the thiocyanate ions and aniline generated in the degradation process. Aniline aerofloat mainly produced two preliminary products during the biodegradation process: aniline and a substance that was difficult to be biodegraded under aerobic conditions, which was the main reason for the relatively high COD value in effluent. Furthermore, aniline was eventually biodegraded. ConclusionThis study provided basis for the development of biological treatment of flotation wastewater in China and showed great significance for the improvement of ecological environment around the mines.
基金Supported by the National Natural Science Foundation of China(31060045,31260091)~~
文摘This paper summarized the possible physiological mechanism by which anthocyanins strengthen the tolerance of plants to drought. Drought stress can in-duce plant cel s to synthesize and accumulate anthocyanins. The photochemical properties, subcel ular accumulation sites and spatial distributions in plant organs and tissues of anthocyanins determine their function of strengthening plant tolerance, which is realized by three possible physiological mechanisms: (1) anthocyanins and their chelated metal ions can optimize the osmoregulation ability of the plant cel s by directly acting as the osmoregulation substances of the cel s, (2) anthocyanins with suitable spatial locations can reduce the photoinhibition of the plants under drought stresses, (3) anthocyanins can effectively maintain and improve the active oxygen-scavenging capacity of the plant cel s under drought conditions. Therein, that the anthocyanins enhance the antioxidant capacity of the plant cel s under drought stresses is probably the main reason for the anthocyanins to strengthen the drought tolerance of plants. This review could provide a reference for the mechanism re-search of the drought resistance and the breeding of the drought-resistant cultivars for the plants holding the ability to synthesize and accumulate anthocyanins.
基金supported by grants from the National Natural Science Foundation of China(21661140002 and 31470157)the Ministry of Science and Technology of China(2012CB721005 and 2012AA022107)
文摘An ideal surrogate host for heterologous production of various natural products is expected to have efficient nutrient utilization,fast growth,abundant precursors and energy supply,and a pronounced gene expression.Streptomyces albus BK3-25 is a high-yield industrial strain producing type-Ⅰ polyketide sahnomycin,with a unique ability of bean oil utilization.Its potential of being a surrogate host for heterologous production of PKS was engineered and evaluated herein.Firstly,introduction of a three-gene cassette for the biosynthesis of ethylmalonyl-CoA resulted in accumulation of ethylmalonyl-CoA precursor and sahnomycin,and subsequent deletion of the sahnomycin biosynthetic gene cluster resulted in a host with rich supplies of common polyketide precursors,including malonyl-CoA,methylmalonyl-CoA,and ethylmalonyl-CoA.Secondly,the energy and reducing force were measured,and the improved accumulation of ATP and NADPH was observed in the mutant.Furthermore,the strength of a series of selected endogenous promoters based on microarray data was assessed at different growth phases,and a strong constitutive promoter was identified,providing a useful tool for further engineered gene expression.Finally,the potential of the BK3-25 derived host ZXJ-6 was evaluated with the introduction of the actinorhodin biosynthetic gene cluster from Streptomyces coelicolor,and the heterologous production of actinorhodin was obtained.This work clearly indicated the potential of the high-yield sahnomycin producer as a surrogate host for heterologous production of polyketides,although more genetic manipulation should be conducted to streamline its performance.