期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
用K-means图像法和主成分分析法监测生菜生长势(英文)
被引量:
19
1
作者
李晓斌
王玉顺
付丽红
《农业工程学报》
EI
CAS
CSCD
北大核心
2016年第12期179-186,共8页
温室植物生长状况的实时监测可为生产管理提供科学的决策支持。为开发实时监测中的机器视觉技术,该文选定生菜为研究对象,从单株和群体两个角度构建生菜生长势图像检测法。采集自然光条件下生菜整个生命周期俯视及侧视两类序列图像样本...
温室植物生长状况的实时监测可为生产管理提供科学的决策支持。为开发实时监测中的机器视觉技术,该文选定生菜为研究对象,从单株和群体两个角度构建生菜生长势图像检测法。采集自然光条件下生菜整个生命周期俯视及侧视两类序列图像样本,并同步人工实测生菜生长势的动态数据样本,探讨生长势的图像检测指标与人工实测综合指标之间的相关性。对于单株生菜,通过CCD相机获取其投影图像及水平面两垂直方向侧视图像。就投影图像分割,为提高算法运行效率,将图像由RGB模型转换到HSI模型并提取H分量图像,再运用自动阈值法进行图像二值化处理,可测得单株生菜的投影面积。由于侧视图像背景较复杂,故联合使用K-means彩色图像分割法及伪彩色图像处理方法,获得生菜株高值。同时手工测量表达单株生菜生长势的叶片数、株高、x轴和y轴方向生菜植株的最大宽度、生菜植株某选定叶片的长和宽等6个指标,用主成分分析法从中提取出总生长势信息。将该值作为因变量,图像测得的投影面积和株高值作为自变量并进行回归分析。结果表明,模型的显著性检验概率均小于0.0001,除第4株生菜外,其余模型的决定系数均大于0.80,说明模型极显著且具有较高的拟合精度。对于群体生菜,预试验发现其侧视图像难以准确表达群体生菜生长势信息,故只考虑投影图像,其分割方法与单株生菜侧视图像相同。从中可计算得到群体生菜覆盖指数,再手工测量并算得群体生菜体积指数,以体积指数为因变量,以覆盖指数为自变量建模并进行回归分析。结果表明,模型显著性检验概率均小于0.0001,且决定系数均大于0.89,覆盖指数较好地表达了群体生菜生长势信息。故用图像检测获得的生菜投影面积、株高、群体覆盖指数等三项指标表征生菜生长势一方面具有科学性和可行性,在植物生长状况实时监测领域具有潜在的应用价值,另一方面,其图像分割方法和数据统计方法也可为植物生长状况实时监测等提供一定的借鉴和参考。
展开更多
关键词
监测
图像处理
主成分分析
生菜生长势
K-MEANS
下载PDF
职称材料
题名
用K-means图像法和主成分分析法监测生菜生长势(英文)
被引量:
19
1
作者
李晓斌
王玉顺
付丽红
机构
山西农业大学工学院
山西农业大学食品科学与工程学院
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2016年第12期179-186,共8页
基金
Scientific Research Foundation of Shanxi province(041085)
Introduce Dr.Scientific Research Foundation of Shanxi Agricultural University(2013YJ26)
文摘
温室植物生长状况的实时监测可为生产管理提供科学的决策支持。为开发实时监测中的机器视觉技术,该文选定生菜为研究对象,从单株和群体两个角度构建生菜生长势图像检测法。采集自然光条件下生菜整个生命周期俯视及侧视两类序列图像样本,并同步人工实测生菜生长势的动态数据样本,探讨生长势的图像检测指标与人工实测综合指标之间的相关性。对于单株生菜,通过CCD相机获取其投影图像及水平面两垂直方向侧视图像。就投影图像分割,为提高算法运行效率,将图像由RGB模型转换到HSI模型并提取H分量图像,再运用自动阈值法进行图像二值化处理,可测得单株生菜的投影面积。由于侧视图像背景较复杂,故联合使用K-means彩色图像分割法及伪彩色图像处理方法,获得生菜株高值。同时手工测量表达单株生菜生长势的叶片数、株高、x轴和y轴方向生菜植株的最大宽度、生菜植株某选定叶片的长和宽等6个指标,用主成分分析法从中提取出总生长势信息。将该值作为因变量,图像测得的投影面积和株高值作为自变量并进行回归分析。结果表明,模型的显著性检验概率均小于0.0001,除第4株生菜外,其余模型的决定系数均大于0.80,说明模型极显著且具有较高的拟合精度。对于群体生菜,预试验发现其侧视图像难以准确表达群体生菜生长势信息,故只考虑投影图像,其分割方法与单株生菜侧视图像相同。从中可计算得到群体生菜覆盖指数,再手工测量并算得群体生菜体积指数,以体积指数为因变量,以覆盖指数为自变量建模并进行回归分析。结果表明,模型显著性检验概率均小于0.0001,且决定系数均大于0.89,覆盖指数较好地表达了群体生菜生长势信息。故用图像检测获得的生菜投影面积、株高、群体覆盖指数等三项指标表征生菜生长势一方面具有科学性和可行性,在植物生长状况实时监测领域具有潜在的应用价值,另一方面,其图像分割方法和数据统计方法也可为植物生长状况实时监测等提供一定的借鉴和参考。
关键词
监测
图像处理
主成分分析
生菜生长势
K-MEANS
Keywords
monitoring
image processing
principal component analysis
lettuce growth
K-means
分类号
TP751.1 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
用K-means图像法和主成分分析法监测生菜生长势(英文)
李晓斌
王玉顺
付丽红
《农业工程学报》
EI
CAS
CSCD
北大核心
2016
19
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部