期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
用K-means图像法和主成分分析法监测生菜生长势(英文) 被引量:19
1
作者 李晓斌 王玉顺 付丽红 《农业工程学报》 EI CAS CSCD 北大核心 2016年第12期179-186,共8页
温室植物生长状况的实时监测可为生产管理提供科学的决策支持。为开发实时监测中的机器视觉技术,该文选定生菜为研究对象,从单株和群体两个角度构建生菜生长势图像检测法。采集自然光条件下生菜整个生命周期俯视及侧视两类序列图像样本... 温室植物生长状况的实时监测可为生产管理提供科学的决策支持。为开发实时监测中的机器视觉技术,该文选定生菜为研究对象,从单株和群体两个角度构建生菜生长势图像检测法。采集自然光条件下生菜整个生命周期俯视及侧视两类序列图像样本,并同步人工实测生菜生长势的动态数据样本,探讨生长势的图像检测指标与人工实测综合指标之间的相关性。对于单株生菜,通过CCD相机获取其投影图像及水平面两垂直方向侧视图像。就投影图像分割,为提高算法运行效率,将图像由RGB模型转换到HSI模型并提取H分量图像,再运用自动阈值法进行图像二值化处理,可测得单株生菜的投影面积。由于侧视图像背景较复杂,故联合使用K-means彩色图像分割法及伪彩色图像处理方法,获得生菜株高值。同时手工测量表达单株生菜生长势的叶片数、株高、x轴和y轴方向生菜植株的最大宽度、生菜植株某选定叶片的长和宽等6个指标,用主成分分析法从中提取出总生长势信息。将该值作为因变量,图像测得的投影面积和株高值作为自变量并进行回归分析。结果表明,模型的显著性检验概率均小于0.0001,除第4株生菜外,其余模型的决定系数均大于0.80,说明模型极显著且具有较高的拟合精度。对于群体生菜,预试验发现其侧视图像难以准确表达群体生菜生长势信息,故只考虑投影图像,其分割方法与单株生菜侧视图像相同。从中可计算得到群体生菜覆盖指数,再手工测量并算得群体生菜体积指数,以体积指数为因变量,以覆盖指数为自变量建模并进行回归分析。结果表明,模型显著性检验概率均小于0.0001,且决定系数均大于0.89,覆盖指数较好地表达了群体生菜生长势信息。故用图像检测获得的生菜投影面积、株高、群体覆盖指数等三项指标表征生菜生长势一方面具有科学性和可行性,在植物生长状况实时监测领域具有潜在的应用价值,另一方面,其图像分割方法和数据统计方法也可为植物生长状况实时监测等提供一定的借鉴和参考。 展开更多
关键词 监测 图像处理 主成分分析 生菜生长势 K-MEANS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部