Biodiesel (fatty acid methyl ester) has been identified as a non-toxic biodegradable alternative fuel that is obtained from renewable sources. Over the last decade, there has been increasing interest in producing bi...Biodiesel (fatty acid methyl ester) has been identified as a non-toxic biodegradable alternative fuel that is obtained from renewable sources. Over the last decade, there has been increasing interest in producing biodiesel from conventional sources such as soybean, canola, sunflower, and coconut oils. Current efforts are directed towards the development of new non-edible resources. Among these Jatropha Curcas comes at the forefront. In Egypt, Jatropha Curcas has grown successfully using primary treated wastewater. Also, extensive R&D efforts identified the optimum conditions for the various processing stages namely crushing, extraction, transesterification and purification. Based on the research findings, the techno-economic appraisal of biodiesel production from Jatropha Curcas is conducted. Two nominal capacities namely 8,000 and 50,000 metric tons/yr have been proposed. Several scenarios have been formulated to take into consideration varying productivity (3.4 to 5.8 ton fruits per 4,000 m^2 (acre)) and varying recovery rates of oil from seeds. Economic indicators including capital and production costs for the various processing stages and revenues according to current prices of oil and cake have been obtained. The price of biodiesel that provides a simple rate of return (SRR) on investments of 10% was in the range of $0.3-0.7/liter for the different assumed scenarios which is lower than the prevailing price of biodiesel (about $1/liter) in the US. Thus, in view of experimental results and economic assumptions, there are positive prospects for the production of biodiesel from Jatropha Curcas under Egyptian conditions.展开更多
To investigate the effect of glycitein, a synthetic soybean isoflavone(ISF), on the intestinal antioxidant capacity, morphology, and cytokine content in young piglets fed oxidized fish oil, 72 4-d-old male piglets w...To investigate the effect of glycitein, a synthetic soybean isoflavone(ISF), on the intestinal antioxidant capacity, morphology, and cytokine content in young piglets fed oxidized fish oil, 72 4-d-old male piglets were assigned to three treatments. The control group was fed a basal diet containing fresh fish oil, and the other two groups received the same diet except for the substitution with the same dosage of oxidized fish oil alone or with ISF(oxidized fish oil plus ISF). After 21 d of feeding, supplementation of oxidized fish oil increased the levels of malondialdehyde(MDA), oxidized glutathione(GSSG), interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), interleukin-2(IL-2), nuclear factor κ B(NF-κB), inducible nitric oxide synthase(iN OS), NO, and Caspase-3 in jejunal mucosa, and decreased the villous height in duodenum and the levels of secretory immunoglobulin A(sI gA) and IL-4 in the jejunal mucosa compared with supplementation with fresh oil. The addition of oxidized fish oil plus ISF partially alleviated this negative effect. The addition of oxidized fish oil plus ISF increased the villous height and levels of sI gA and IL-4 in jejunal mucosa, but decreased the levels of IL-1β and IL-2 in jejunal mucosa(P0.05) compared with oxidized fish oil. Collectively, these results show that dietary supplementation of ISF could partly alleviate the negative effect of oxidized fish oil by improving the intestinal morphology as well as the antioxidant capacity and immune function in young piglets.展开更多
Two kinds of rosin derivatives, (2-hydroxy-3-(methacryloyloxy)propyl 7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,4b,5,6,10,10a- decahydrophenanthrene-1-carboxylate) (HMPIDDC) and (((7-isopropyl-1,4a-dimethyl-1,2,3,4...Two kinds of rosin derivatives, (2-hydroxy-3-(methacryloyloxy)propyl 7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,4b,5,6,10,10a- decahydrophenanthrene-1-carboxylate) (HMPIDDC) and (((7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenan- thren-1-yl)methyl)azanediyl)bis(2-hydroxypropane-3,1-diyl)bis(2-methylacrylate) (IDOMAHM) were synthesized under mild and easy to implement conditions. The two derivatives were employed as the rigid monomers to copolymerize with acrylated epoxidized soybean oil (AESO), as so to improve the performance of the cured resins. The chemical structures of HMPIDDC and IDOMAHM were confirmed by nuclear magnetic resonance (NMR) and Fourier Transform Infrared (FT-IR) before copolymerization. The curing behaviors of pristine AESO, AESO/HMPIDDC blend, and AESO/IDOMAHM blend were monitored by differential scanning calorimetry (DSC). Moreover, the thermal and mechanical properties of the cured resins were evaluated by universal mechanical testing, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). The results demonstrated that after the introduction of HMPIDDC and IDOMAHM, the glass transition temperature and mechanical properties of the copolymerized resin were significantly increased. In one word, HMPIDDC and IDOMAHM showed dramatic potential to be used as bio-based compounds to improve the properties of soybean-oil based thermosets.展开更多
文摘Biodiesel (fatty acid methyl ester) has been identified as a non-toxic biodegradable alternative fuel that is obtained from renewable sources. Over the last decade, there has been increasing interest in producing biodiesel from conventional sources such as soybean, canola, sunflower, and coconut oils. Current efforts are directed towards the development of new non-edible resources. Among these Jatropha Curcas comes at the forefront. In Egypt, Jatropha Curcas has grown successfully using primary treated wastewater. Also, extensive R&D efforts identified the optimum conditions for the various processing stages namely crushing, extraction, transesterification and purification. Based on the research findings, the techno-economic appraisal of biodiesel production from Jatropha Curcas is conducted. Two nominal capacities namely 8,000 and 50,000 metric tons/yr have been proposed. Several scenarios have been formulated to take into consideration varying productivity (3.4 to 5.8 ton fruits per 4,000 m^2 (acre)) and varying recovery rates of oil from seeds. Economic indicators including capital and production costs for the various processing stages and revenues according to current prices of oil and cake have been obtained. The price of biodiesel that provides a simple rate of return (SRR) on investments of 10% was in the range of $0.3-0.7/liter for the different assumed scenarios which is lower than the prevailing price of biodiesel (about $1/liter) in the US. Thus, in view of experimental results and economic assumptions, there are positive prospects for the production of biodiesel from Jatropha Curcas under Egyptian conditions.
基金supported by the China Agriculture Research System(No.CARS-36)the Science and Technology Program of Guangdong Province(Nos.2014A050503049 and 2013A061401020)+1 种基金the National Key Technology R&D Program of China(No.2012BAD39B01-5)the Science and Technology Program of Guangzhou(No.2014Y2-00121),China
文摘To investigate the effect of glycitein, a synthetic soybean isoflavone(ISF), on the intestinal antioxidant capacity, morphology, and cytokine content in young piglets fed oxidized fish oil, 72 4-d-old male piglets were assigned to three treatments. The control group was fed a basal diet containing fresh fish oil, and the other two groups received the same diet except for the substitution with the same dosage of oxidized fish oil alone or with ISF(oxidized fish oil plus ISF). After 21 d of feeding, supplementation of oxidized fish oil increased the levels of malondialdehyde(MDA), oxidized glutathione(GSSG), interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), interleukin-2(IL-2), nuclear factor κ B(NF-κB), inducible nitric oxide synthase(iN OS), NO, and Caspase-3 in jejunal mucosa, and decreased the villous height in duodenum and the levels of secretory immunoglobulin A(sI gA) and IL-4 in the jejunal mucosa compared with supplementation with fresh oil. The addition of oxidized fish oil plus ISF partially alleviated this negative effect. The addition of oxidized fish oil plus ISF increased the villous height and levels of sI gA and IL-4 in jejunal mucosa, but decreased the levels of IL-1β and IL-2 in jejunal mucosa(P0.05) compared with oxidized fish oil. Collectively, these results show that dietary supplementation of ISF could partly alleviate the negative effect of oxidized fish oil by improving the intestinal morphology as well as the antioxidant capacity and immune function in young piglets.
基金supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2012229)Natural Sciences Foundation of Ningbo City(Grant No.2014A610110)+1 种基金Research Project of Technology Application for Public Welfare of Zhejiang Province(Grant No.2014C31143)National Natural Science Foundation of China(Grant Nos.51373194,51203176)
文摘Two kinds of rosin derivatives, (2-hydroxy-3-(methacryloyloxy)propyl 7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,4b,5,6,10,10a- decahydrophenanthrene-1-carboxylate) (HMPIDDC) and (((7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenan- thren-1-yl)methyl)azanediyl)bis(2-hydroxypropane-3,1-diyl)bis(2-methylacrylate) (IDOMAHM) were synthesized under mild and easy to implement conditions. The two derivatives were employed as the rigid monomers to copolymerize with acrylated epoxidized soybean oil (AESO), as so to improve the performance of the cured resins. The chemical structures of HMPIDDC and IDOMAHM were confirmed by nuclear magnetic resonance (NMR) and Fourier Transform Infrared (FT-IR) before copolymerization. The curing behaviors of pristine AESO, AESO/HMPIDDC blend, and AESO/IDOMAHM blend were monitored by differential scanning calorimetry (DSC). Moreover, the thermal and mechanical properties of the cured resins were evaluated by universal mechanical testing, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). The results demonstrated that after the introduction of HMPIDDC and IDOMAHM, the glass transition temperature and mechanical properties of the copolymerized resin were significantly increased. In one word, HMPIDDC and IDOMAHM showed dramatic potential to be used as bio-based compounds to improve the properties of soybean-oil based thermosets.