Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning el...Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning electron microscopy(FE-SEM) were used to investigate the morphology evolution of the anodic oxide film.It is shown that above the breakdown voltage,oxygen is generated with the occurrence of drums morphology.These drums grow and extrude,which yields the compression stress.Subsequently,microcracks are generated.With continuous anodizing,porous oxides form at the microcracks.Those oxides grow and connect to each other,finally replace the microcrack morphology.The depth profile of the anodic oxide film formed at 1 800 s was examined by Auger electron spectroscopy(AES).It is found that the film is divided into three layers according to the molar fractions of elements.The outer layer is incorporated by carbon,which may come from electrolyte solution.The thickness of the outer layer is approximately 0.2-0.3 μm.The molar fractions of elements in the intermediate layer are extraordinarily stable,while those in the inner layer vary significantly with sputtering depth.The thicknesses of the intermediate layer and the inner layer are 2 μm and 1.0-1.5 μm,respectively.Moreover,the growth mechanism of porous anodic oxide films in neutral tartrate solution was proposed.展开更多
Post-translational modifications play a crucial role in coordinating cellular response to DNA damage. Recent evidence suggests an interplay between multiple protein modifications, including phosphorylation, ubiquityla...Post-translational modifications play a crucial role in coordinating cellular response to DNA damage. Recent evidence suggests an interplay between multiple protein modifications, including phosphorylation, ubiquitylation, acetylation and sumoylation, that combine to propagate the DNA damage signal to elicit cell cycle arrest, DNA repair, apoptosis and senescence. Utility of specific post-translational modifiers allows temporal and spatial control over protein relo-calization and interactions, and may represent a means for trans-regulatory activation of protein activities. The ability to recognize these specific modifiers also underscores the capacity for signal amplification, a crucial step for the maintenance of genomic stability and tumor prevention. Here we have summarized recent findings that highlight the complexity of post-translational modifications in coordinating the DNA damage response, with emphasis on the DNA damage signaling cascade.展开更多
Eosinophilic esophagitis is a newly diagnosed esophageal disease in adult and children. The clinical and pathological characteristics of this disease have been established and were recently summarized in the expert cl...Eosinophilic esophagitis is a newly diagnosed esophageal disease in adult and children. The clinical and pathological characteristics of this disease have been established and were recently summarized in the expert clinical guideline published in 2011. In spite of the wide knowledge accumulated on this disease, there are many areas where scientific data are missing, especially in regard to the disease's pathophysiology. Recent publications have suggested that other confounding factors modify the disease and may affect its clinicalphenotypic presentation. Those factors may include place of living, air pollution, race, genetic factors and other. In the present report we discussed and review those confounding factors, the new developments, and what direction we should go to further advance our knowledge of this disease.展开更多
Based on literature data and shipboard observations,this study investigated the main environmental characteristics of the seafloor topography,current field,front,and upwelling that are closely related to hypoxia occur...Based on literature data and shipboard observations,this study investigated the main environmental characteristics of the seafloor topography,current field,front,and upwelling that are closely related to hypoxia occurrence off the Changjiang estuary.The physical processes of the plume front and upwelling off the Changjiang estuary in summer were coupled.The vertical distribution pattern of the plume front was closely related to the upwelling.By reviewing and analyzing the historical summer hypoxia events off the Changjiang estuary,we statistically demonstrated the spatial structure of the horizontal distribution of the hypoxic zone and investigated the location of occurrence zone of the hypoxia.We found that the dissolved oxygen(DO)concentration on the inner continental shelf off the estuary showed a"V"shape in relation to station depth.Therefore,we noted that the hypoxic water on the inner continental shelf mostly occurred on the slopes with steep seafloor topography.Base on the current understanding of the hypoxic mechanisms off the Changjiang estuary,we analyzed the biogeochemical mechanisms that could cause the steep terrain off the Changjiang estuary to become the main areas prone to summer hypoxia and explained the internal relations between the location of the hypoxic zone on the slopes and the plume front and upwelling.The plume front and upwelling off the Changjiang estuary and their coupling were important driving forces of summer hypoxia.The continuous supply of nutrients affected by the interaction of the plume front extension of the Changjiang Diluted Water(CDW)and upwelling and the favorable light conditions were important mechanisms causing the phytoplankton blooms and benthic hypoxia off the Changjiang estuary in summer.By analyzing oxygen utilization,organic carbon mineralization,and nutrient regeneration in the hypoxic zone,we observed that the significant oxygen utilization process off the Changjiang estuary in summer also mainly occurred near the steep slopes with front and upwelling features and confirmed the apparent nutrient loss in the benthic hypoxic zone.Meanwhile,our analysis revealed that the sediment resuspension in the benthic boundary layer in the mud areas off the Changjiang estuary could also affect the oxygen utilization and mineralization of organic carbon and nutrient recycling and regeneration.This study also demonstrated that the steep terrain off the Changjiang estuary was the main location for summer acidification,and the coupling between the plume front and upwelling on the steep slopes was an important physical driving force inducing summer benthic acidification.Finally,we discussed issues to address in future studies of the hypoxic zone and water acidification off the Changjiang estuary.展开更多
基金Project(50571003) supported by the National Natural Science Foundation of China
文摘Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning electron microscopy(FE-SEM) were used to investigate the morphology evolution of the anodic oxide film.It is shown that above the breakdown voltage,oxygen is generated with the occurrence of drums morphology.These drums grow and extrude,which yields the compression stress.Subsequently,microcracks are generated.With continuous anodizing,porous oxides form at the microcracks.Those oxides grow and connect to each other,finally replace the microcrack morphology.The depth profile of the anodic oxide film formed at 1 800 s was examined by Auger electron spectroscopy(AES).It is found that the film is divided into three layers according to the molar fractions of elements.The outer layer is incorporated by carbon,which may come from electrolyte solution.The thickness of the outer layer is approximately 0.2-0.3 μm.The molar fractions of elements in the intermediate layer are extraordinarily stable,while those in the inner layer vary significantly with sputtering depth.The thicknesses of the intermediate layer and the inner layer are 2 μm and 1.0-1.5 μm,respectively.Moreover,the growth mechanism of porous anodic oxide films in neutral tartrate solution was proposed.
文摘Post-translational modifications play a crucial role in coordinating cellular response to DNA damage. Recent evidence suggests an interplay between multiple protein modifications, including phosphorylation, ubiquitylation, acetylation and sumoylation, that combine to propagate the DNA damage signal to elicit cell cycle arrest, DNA repair, apoptosis and senescence. Utility of specific post-translational modifiers allows temporal and spatial control over protein relo-calization and interactions, and may represent a means for trans-regulatory activation of protein activities. The ability to recognize these specific modifiers also underscores the capacity for signal amplification, a crucial step for the maintenance of genomic stability and tumor prevention. Here we have summarized recent findings that highlight the complexity of post-translational modifications in coordinating the DNA damage response, with emphasis on the DNA damage signaling cascade.
文摘Eosinophilic esophagitis is a newly diagnosed esophageal disease in adult and children. The clinical and pathological characteristics of this disease have been established and were recently summarized in the expert clinical guideline published in 2011. In spite of the wide knowledge accumulated on this disease, there are many areas where scientific data are missing, especially in regard to the disease's pathophysiology. Recent publications have suggested that other confounding factors modify the disease and may affect its clinicalphenotypic presentation. Those factors may include place of living, air pollution, race, genetic factors and other. In the present report we discussed and review those confounding factors, the new developments, and what direction we should go to further advance our knowledge of this disease.
基金supported by the National Natural Science Foundation of China(Grant Nos.41206068&41620104001)the National Natural Science Foundation-Shandong Province Joint Fund for Marine Science Research Center(Grant No.U1406403)+4 种基金the Basic Scientific Fund for National Public Research Institutes of China(Grant No.2016S/Q08)the Open Fund of the Key Laboratory of Marine Ecology and Environmental Sciences,Institute of Oceanology,Chinese Academy of Sciences and the Laboratory of Marine Ecology and Environmental ScienceQingdao National Laboratory for Marine Science and Technology(Grant No.KLMEES201603)the National Basic Research Program of China(Grant No.2010CB428703)the National Project of Comprehensive Investigation and Research of the Coastal Seas of China(Grant No.908-ZC-I-03)
文摘Based on literature data and shipboard observations,this study investigated the main environmental characteristics of the seafloor topography,current field,front,and upwelling that are closely related to hypoxia occurrence off the Changjiang estuary.The physical processes of the plume front and upwelling off the Changjiang estuary in summer were coupled.The vertical distribution pattern of the plume front was closely related to the upwelling.By reviewing and analyzing the historical summer hypoxia events off the Changjiang estuary,we statistically demonstrated the spatial structure of the horizontal distribution of the hypoxic zone and investigated the location of occurrence zone of the hypoxia.We found that the dissolved oxygen(DO)concentration on the inner continental shelf off the estuary showed a"V"shape in relation to station depth.Therefore,we noted that the hypoxic water on the inner continental shelf mostly occurred on the slopes with steep seafloor topography.Base on the current understanding of the hypoxic mechanisms off the Changjiang estuary,we analyzed the biogeochemical mechanisms that could cause the steep terrain off the Changjiang estuary to become the main areas prone to summer hypoxia and explained the internal relations between the location of the hypoxic zone on the slopes and the plume front and upwelling.The plume front and upwelling off the Changjiang estuary and their coupling were important driving forces of summer hypoxia.The continuous supply of nutrients affected by the interaction of the plume front extension of the Changjiang Diluted Water(CDW)and upwelling and the favorable light conditions were important mechanisms causing the phytoplankton blooms and benthic hypoxia off the Changjiang estuary in summer.By analyzing oxygen utilization,organic carbon mineralization,and nutrient regeneration in the hypoxic zone,we observed that the significant oxygen utilization process off the Changjiang estuary in summer also mainly occurred near the steep slopes with front and upwelling features and confirmed the apparent nutrient loss in the benthic hypoxic zone.Meanwhile,our analysis revealed that the sediment resuspension in the benthic boundary layer in the mud areas off the Changjiang estuary could also affect the oxygen utilization and mineralization of organic carbon and nutrient recycling and regeneration.This study also demonstrated that the steep terrain off the Changjiang estuary was the main location for summer acidification,and the coupling between the plume front and upwelling on the steep slopes was an important physical driving force inducing summer benthic acidification.Finally,we discussed issues to address in future studies of the hypoxic zone and water acidification off the Changjiang estuary.