The plant growth and physiological and biochemical responses of root and leaves of grape Yinhong seedlings to the weak lights of 20 000,16 000,12 000,8 000 lx and the normal illumination of 25 000 lx(CK) respectivel...The plant growth and physiological and biochemical responses of root and leaves of grape Yinhong seedlings to the weak lights of 20 000,16 000,12 000,8 000 lx and the normal illumination of 25 000 lx(CK) respectively,were investigated.There was no significant dfference in growth indexes of root and leaves of grapevine seedlings between the light of 20 000 lx and CK,and the light of 16 000 lx and CK for 30 d.The chlorophyll contents,soluble protein contents,net photosynthetic rates,transpiration rates,stomatal conductance,water use efficiency and protective enzyme(CAT,POD,SOD) activities in the leaves under the lights of 20 000 lx and 16 000 lx for 30 d were all higher than those under the lights of 20 000 lx and 16 000 lx for 1 d.Under the light of 8 000 lx for 30 d,the growth indexes of root and leaves of grapevine seedlings were significantly lower than those of CK,and except for MDA content,most physiological and biochemical indexes of the leaves were significantly lower than those under the light of 8 000 lx for 1 d.Under12 000 lx,the values of most growth indexes in root and leaves and physiological and biochemical indexes in leaves were between the 16 000 lx and 8 000 lx.In conclusion,Yinhong could grow under the lights above 16 000 lx,and would be stunted by the weak light below 8 000 lx.展开更多
Mixotrophic growth is one potential mode for mass culture of microalgae and cyanobacteria particularly suitable for the production of high value bioactive compounds and fine chemicals.The typical heterocystous cyanoba...Mixotrophic growth is one potential mode for mass culture of microalgae and cyanobacteria particularly suitable for the production of high value bioactive compounds and fine chemicals.The typical heterocystous cyanobacterium Anabaena sp.PCC 7120 was grown in the presence of exogenous glucose in light.Glucose improved the cell growth evidently,the maximal specific growth rate under mixotrophic condition(0.38 d 1)being 1.6-fold of that of photoautotrophic growth.Mixotrophy caused a variation in cellular pigment composition,increasing the content of chlorophyll a and decreasing the contents of carotenoid and phycobiliprotein relative to chlorophyll a.Fluorescence emission from photosystem II(PSII)relative to photosystem I was enhanced in mixotrophic cells,implying an increased energy distribution in PSII.Glucokinase(EC 2.7.1.2)activity was further induced in the presence of glucose.The mixotrophic culture was scaled up in a 15 L airlift photobioreactor equipped with an inner and an outer light source.A modified Monod model incorporating the specific growth rate and the average light intensity in the reactor was developed to describe cell growth appropriately.The understanding of mixotrophic growth and relevant physiological features of Anabaena sp.PCC 7120 would be meaningful for cultivation and exploitation of this important cyanobacterial strain.展开更多
基金Supported by Science and Technology Innovation Team Project of Ningbo Province of China(2011B82019)Supported by Natural Science Foundation of Ningbo Province of China(Y13C150014)+1 种基金Supported by Foundation of Zhejiang Educational Committee(2011C32008)Supported by Science and Technology Project of Ningbo Province,China(2010C91049)~~
文摘The plant growth and physiological and biochemical responses of root and leaves of grape Yinhong seedlings to the weak lights of 20 000,16 000,12 000,8 000 lx and the normal illumination of 25 000 lx(CK) respectively,were investigated.There was no significant dfference in growth indexes of root and leaves of grapevine seedlings between the light of 20 000 lx and CK,and the light of 16 000 lx and CK for 30 d.The chlorophyll contents,soluble protein contents,net photosynthetic rates,transpiration rates,stomatal conductance,water use efficiency and protective enzyme(CAT,POD,SOD) activities in the leaves under the lights of 20 000 lx and 16 000 lx for 30 d were all higher than those under the lights of 20 000 lx and 16 000 lx for 1 d.Under the light of 8 000 lx for 30 d,the growth indexes of root and leaves of grapevine seedlings were significantly lower than those of CK,and except for MDA content,most physiological and biochemical indexes of the leaves were significantly lower than those under the light of 8 000 lx for 1 d.Under12 000 lx,the values of most growth indexes in root and leaves and physiological and biochemical indexes in leaves were between the 16 000 lx and 8 000 lx.In conclusion,Yinhong could grow under the lights above 16 000 lx,and would be stunted by the weak light below 8 000 lx.
基金Supported by a grant from the State Key Laboratory of Biochemical Engineering,Institute of Process Engineering,Chinese Academy of Sciences
文摘Mixotrophic growth is one potential mode for mass culture of microalgae and cyanobacteria particularly suitable for the production of high value bioactive compounds and fine chemicals.The typical heterocystous cyanobacterium Anabaena sp.PCC 7120 was grown in the presence of exogenous glucose in light.Glucose improved the cell growth evidently,the maximal specific growth rate under mixotrophic condition(0.38 d 1)being 1.6-fold of that of photoautotrophic growth.Mixotrophy caused a variation in cellular pigment composition,increasing the content of chlorophyll a and decreasing the contents of carotenoid and phycobiliprotein relative to chlorophyll a.Fluorescence emission from photosystem II(PSII)relative to photosystem I was enhanced in mixotrophic cells,implying an increased energy distribution in PSII.Glucokinase(EC 2.7.1.2)activity was further induced in the presence of glucose.The mixotrophic culture was scaled up in a 15 L airlift photobioreactor equipped with an inner and an outer light source.A modified Monod model incorporating the specific growth rate and the average light intensity in the reactor was developed to describe cell growth appropriately.The understanding of mixotrophic growth and relevant physiological features of Anabaena sp.PCC 7120 would be meaningful for cultivation and exploitation of this important cyanobacterial strain.