SiC films were prepared by heating polystyrene/Si(111) in normal pressure argon atmosphere at different temperatures. The films were investigated by X-ray diffraction, scanning electron microscopy, X-ray photoelectr...SiC films were prepared by heating polystyrene/Si(111) in normal pressure argon atmosphere at different temperatures. The films were investigated by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and Fourier transform infrared absorption measurements. The thicknesses of SiC films were calculated from FTIR spectra. The growth kinetics of the growth process of SiC films were investigated as well. The thicknesses of the SiC films grown for 1 h with increasing growth temperatures have different trends in the three temperature ranges: increasing slowly (1200-1250 ℃), increasing quickly (1250- 12.70 ℃), and decreasing (1270-1300 ℃). The apparent activation energies of the growth process of SiC films in the three ranges were calculated to be 122.5,522.5, and -127.5 J/mol respectively. Mechanisms of the different growth processes were discussed. The relation between film thicknesses and growth temperatures indicated that the growth process was a 2D mechanism in the first range and 3D mechanism in the second range. In the third range, the thicknesses of SiC films were decreased by the volatility of Si and C atoms.展开更多
基金ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.50672095).
文摘SiC films were prepared by heating polystyrene/Si(111) in normal pressure argon atmosphere at different temperatures. The films were investigated by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and Fourier transform infrared absorption measurements. The thicknesses of SiC films were calculated from FTIR spectra. The growth kinetics of the growth process of SiC films were investigated as well. The thicknesses of the SiC films grown for 1 h with increasing growth temperatures have different trends in the three temperature ranges: increasing slowly (1200-1250 ℃), increasing quickly (1250- 12.70 ℃), and decreasing (1270-1300 ℃). The apparent activation energies of the growth process of SiC films in the three ranges were calculated to be 122.5,522.5, and -127.5 J/mol respectively. Mechanisms of the different growth processes were discussed. The relation between film thicknesses and growth temperatures indicated that the growth process was a 2D mechanism in the first range and 3D mechanism in the second range. In the third range, the thicknesses of SiC films were decreased by the volatility of Si and C atoms.