期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于“深度学习”识别模型的玉米农田监测应用系统设计与实现 被引量:6
1
作者 阎妍 行鸿彦 +4 位作者 刘刚 吴红军 吴慧 戴学飞 余培 《气象科技》 2019年第4期571-580,共10页
为了精准判断玉米所处生长阶段,远程实时监测玉米长势,分析生长阶段与田间环境要素间的关系,本文提出深度局部关联神经网络,克服了玉米生长阶段识别中存在的多模态和模糊性问题,在Oxford VGGNet(Visual Geometry Group Net)模型中添加... 为了精准判断玉米所处生长阶段,远程实时监测玉米长势,分析生长阶段与田间环境要素间的关系,本文提出深度局部关联神经网络,克服了玉米生长阶段识别中存在的多模态和模糊性问题,在Oxford VGGNet(Visual Geometry Group Net)模型中添加一个新的监督层,即局部关联损失层,提高深层特征的判别能力。基于所提的玉米生长阶段图片识别新算法,拓展环境要素监测功能,设计一套基于深度学习的玉米农田监测系统。系统由玉米农田监测装置和云端服务器组成,监测装置采集玉米图像、气象要素和田间位置数据,通过4G无线发送给云端服务器,云端服务器利用深度局部关联神经网络识别生长阶段,显示结果并存入数据库中。仿真试验表明,深度局部关联神经网络平均识别准确率达到92.53%,较VGGNet的87.21%和LSTM的88.50%,准确率分别提高了5.32%和4.03%。实地测试结果表明,野外环境下系统准确率可达到91.43%,能够稳定地对农田玉米生长情况进行监测,具有重要的应用价值。 展开更多
关键词 玉米农田监测 生长阶段识别 卷积神经网络 深度局部关联
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部