A novel modified pilot scale anaerobic oxidation ditch with additional internal anoxic zones was operated experimentally, aiming to study the improvement of biological nitrogen and phosphorus removal and the effect of...A novel modified pilot scale anaerobic oxidation ditch with additional internal anoxic zones was operated experimentally, aiming to study the improvement of biological nitrogen and phosphorus removal and the effect of enhanced denitrifying phosphorus removal in the process. Under all experimental conditions, the anaero- bic-oxidation ditch with additional internal anoxic zones and an internal recycle ratio of 200% had the highest nutrient removal efficiency. The effluent NH4 -N, total nitrogen (TN), PO3 -P and total phosphorus (TP) contents were 1.2 mg.L-1, 13 mg.L 1, 0.3 mg.L -1 and 0.4 mg.L-1, respectively, all met the discharge standards in China. The TN and TP removal efficiencies were remarkably improved from 37% and 50% to 65% and 88% with the presence of additional internal anoxic zones and internal recycle ratio of 200%. The results indicated that additional internal anoxic zones can optimize the utilization of available carbon source from the anaerobic outflow for denitrification. It was also found that phosphorus removal via the denitrification process was stimulated in the additional internal anoxic zones, which was beneficial for biological nitrogen and phosphorus removal when treating wastewater with a limited carbon source. However, an excess internal recycle would cause nitrite to accumulate in the system. This seems to be harmful to biological phosphorus removal.展开更多
The application of the Genetic Algorithm (GA) for the influent flow optimized distribution in the four stage pilot plant of Step-Feed Biological Nutrient Removal (BNR) System was discussed. Under decided process p...The application of the Genetic Algorithm (GA) for the influent flow optimized distribution in the four stage pilot plant of Step-Feed Biological Nutrient Removal (BNR) System was discussed. Under decided process parameter and influent water conditions, the objective function of optimization was designed to minimize the difference between estimated and required effluent concentrations at the four stage pilot plant of Step-Feed BNR System, the optimized parameter for influent distribution ratios of the four stages is 37.2%, 27.4%, 23.2% and 12.2% respectively. According to the optimizations results and raw wastewater pilot-scale experiment, the average removal efficiencies for pollutants are higher.展开更多
The effects of two different external carbon sources (acetate and ethanol) and electron acceptors (dissolved oxygen, nitrate, and nitrite) were investigated under aerobic and anoxic conditions with non-acclimated ...The effects of two different external carbon sources (acetate and ethanol) and electron acceptors (dissolved oxygen, nitrate, and nitrite) were investigated under aerobic and anoxic conditions with non-acclimated process bi- omass from a full-scale biological nutrient removal-activated sludge system. When acetate was added as an external carbon source, phosphate release was observed even in the presence of electron acceptors. The release rates were 1.7, 7.8, and 3.5 mg P/(g MLVSS.h) (MLVSS: mixed liquor volatile suspended solids), respectively, for dissolved oxygen, nitrate, and nitrite. In the case of ethanol, no phosphate release was observed in the presence of electron acceptors. Results of the experiments with nitrite showed that approximately 25 mg NO2-N/L of nitrite inhibited anoxic phosphorus uptake regardless of the concentration of the tested external carbon sources. Furthermore, higher deni- trification rates were obtained with acetate (1.4 and 0.8 mg N/(g MLVSS.h)) compared to ethanol (1.1 and 0.7 mg N/ (g MLVSS.h)) for both anoxic electron acceptors (nitrate and nitrite).展开更多
基金Supported by Major Science and Technology Program for Water Pollution Control and Treatment(2008ZX07316)
文摘A novel modified pilot scale anaerobic oxidation ditch with additional internal anoxic zones was operated experimentally, aiming to study the improvement of biological nitrogen and phosphorus removal and the effect of enhanced denitrifying phosphorus removal in the process. Under all experimental conditions, the anaero- bic-oxidation ditch with additional internal anoxic zones and an internal recycle ratio of 200% had the highest nutrient removal efficiency. The effluent NH4 -N, total nitrogen (TN), PO3 -P and total phosphorus (TP) contents were 1.2 mg.L-1, 13 mg.L 1, 0.3 mg.L -1 and 0.4 mg.L-1, respectively, all met the discharge standards in China. The TN and TP removal efficiencies were remarkably improved from 37% and 50% to 65% and 88% with the presence of additional internal anoxic zones and internal recycle ratio of 200%. The results indicated that additional internal anoxic zones can optimize the utilization of available carbon source from the anaerobic outflow for denitrification. It was also found that phosphorus removal via the denitrification process was stimulated in the additional internal anoxic zones, which was beneficial for biological nitrogen and phosphorus removal when treating wastewater with a limited carbon source. However, an excess internal recycle would cause nitrite to accumulate in the system. This seems to be harmful to biological phosphorus removal.
文摘The application of the Genetic Algorithm (GA) for the influent flow optimized distribution in the four stage pilot plant of Step-Feed Biological Nutrient Removal (BNR) System was discussed. Under decided process parameter and influent water conditions, the objective function of optimization was designed to minimize the difference between estimated and required effluent concentrations at the four stage pilot plant of Step-Feed BNR System, the optimized parameter for influent distribution ratios of the four stages is 37.2%, 27.4%, 23.2% and 12.2% respectively. According to the optimizations results and raw wastewater pilot-scale experiment, the average removal efficiencies for pollutants are higher.
基金Project supported by the European Regional Development Fund within the Framework of the Innovative Economy Operational Program 2007-2013(No.UDA-POIG.01.03.01-22-140/09-04)the CARbon BALAncing for Nutrient Control in Wastewater Treatment(CARBALA)(No.PIRSES-GA-2011-295176)the National Water Pollution Control and Management of Science and Technology in China(No.2015ZX07218001)
文摘The effects of two different external carbon sources (acetate and ethanol) and electron acceptors (dissolved oxygen, nitrate, and nitrite) were investigated under aerobic and anoxic conditions with non-acclimated process bi- omass from a full-scale biological nutrient removal-activated sludge system. When acetate was added as an external carbon source, phosphate release was observed even in the presence of electron acceptors. The release rates were 1.7, 7.8, and 3.5 mg P/(g MLVSS.h) (MLVSS: mixed liquor volatile suspended solids), respectively, for dissolved oxygen, nitrate, and nitrite. In the case of ethanol, no phosphate release was observed in the presence of electron acceptors. Results of the experiments with nitrite showed that approximately 25 mg NO2-N/L of nitrite inhibited anoxic phosphorus uptake regardless of the concentration of the tested external carbon sources. Furthermore, higher deni- trification rates were obtained with acetate (1.4 and 0.8 mg N/(g MLVSS.h)) compared to ethanol (1.1 and 0.7 mg N/ (g MLVSS.h)) for both anoxic electron acceptors (nitrate and nitrite).