Time-temperature indicators(TTIs) are convenient intuitive devices that are widely used to predict food quality. The aim of this study is to develop a new simple device which can be attached to food packages as a qual...Time-temperature indicators(TTIs) are convenient intuitive devices that are widely used to predict food quality. The aim of this study is to develop a new simple device which can be attached to food packages as a quality indicator for turbot sashimi. In this study, a solid TTI based on the reaction between tyrosinase and tyrosine was developed. The Arrhenius behavior of this enzymatic TTI was studied. The kinetics of the tyrosinase-based TTI was investigated in the form of color change from colorless to dark black induced by the enzymatic reaction. The mathematical formula for the color alterations as a function of time and temperature was established. The longest indication time for the developed TTI was 50 hours at 4℃. The activation energy of the tyrosinase-based TTI was 0.409 k J mol^(-1). The suitability of the tyrosinase-based TTI was validated for turbot sashimi using total plate count. The feasibility of using this TTI as a quality indicator for turbot sashimi was assessed based on the activation energy and indication time. Therefore, the tyrosinasebased TTI system developed in this study could be used as an effective tool for monitoring the quality changes of turbot sashimi during the distribution and storage.展开更多
基金the Science and Technology Major Projects of Shandong Province (No. 2015ZDZX05 003)the National Science & Technology Pillar Program (No. 2015BAD16B0902)
文摘Time-temperature indicators(TTIs) are convenient intuitive devices that are widely used to predict food quality. The aim of this study is to develop a new simple device which can be attached to food packages as a quality indicator for turbot sashimi. In this study, a solid TTI based on the reaction between tyrosinase and tyrosine was developed. The Arrhenius behavior of this enzymatic TTI was studied. The kinetics of the tyrosinase-based TTI was investigated in the form of color change from colorless to dark black induced by the enzymatic reaction. The mathematical formula for the color alterations as a function of time and temperature was established. The longest indication time for the developed TTI was 50 hours at 4℃. The activation energy of the tyrosinase-based TTI was 0.409 k J mol^(-1). The suitability of the tyrosinase-based TTI was validated for turbot sashimi using total plate count. The feasibility of using this TTI as a quality indicator for turbot sashimi was assessed based on the activation energy and indication time. Therefore, the tyrosinasebased TTI system developed in this study could be used as an effective tool for monitoring the quality changes of turbot sashimi during the distribution and storage.